

पश्चिमी अपतटीय, ओएनजीसी में वॉटर इंजेक्शन परिचालन पर भारत के नियंत्रक एवं महालेखापरीक्षक का प्रतिवेदन

संघ सरकार पेट्रोलियम एवं प्राकृतिक गैस मंत्रालय 2021 की संख्या 19 (अनुपालन लेखापरीक्षा)

पश्चिमी अपतटीय, ओएनजीसी में वॉटर इंजेक्शन परिचालन पर भारत के नियंत्रक एवं महालेखापरीक्षक का प्रतिवेदन

संघ सरकार पेट्रोलियम एवं प्राकृतिक गैस मंत्रालय 2021 की संख्या 19 (अनुपालन लेखापरीक्षा)

अनुक्रमणिका

अध्याय	विवरण	पृष्ठ सं.
	प्रस्तावना	iii
	कार्यकारी सार एवं सिफारिशें	V
1	परिचय	1
2	अधिदेश, लेखा परीक्षा का दायरा और कार्यप्रणाली	5
3	वॉटर इंजेक्शन की आवश्यकता की योजना एवं कार्यान्वयन	7
4	वॉटर इंजेक्शन उपकरण	17
5	वॉटर इंजेक्शन की गुणवत्ता	33
6	वॉटर इंजेक्शन लाइनों और इंजेक्टरों का रखरखाव	49
7	अपर्याप्त वॉटर इंजेक्शन का प्रभाव	65
8	निष्कर्ष	73
9	अनुलग्नक	77
10	शब्दकोष	103

प्रस्तावना

'पश्चिमी अपतट, ओएनजीसी में वॉटर इंजेक्शन संचालन' पर अनुपालन लेखापरीक्षा रिपोर्ट सरकार को प्रस्तुत करने के लिए नियंत्रक एवं महालेखा परीक्षक (कर्तव्य, शिक्तयां और सेवा की शर्तें) अधिनियम, 1971 की धारा 19-ए के प्रावधानों के तहत तैयार की गई है। लेखापरीक्षा को लेखापरीक्षा और लेखा पर विनियम, 2007 (अगस्त 2020 में संशोधित) और भारत के नियंत्रक एवं महालेखा परीक्षक के अनुपालन लेखापरीक्षा दिशानिर्देशों के अनुरूप किया गया है।

लेखापरीक्षा में 2014-15 से 2018-19 तक की अवधि को कवर कियागया। रिपोर्ट ऑयल एंड नेचुरल गैस कॉपरिशन लिमिटेड से संबंधित दस्तावेजों की जांच पर आधारित है। यह सुनिश्चित करने के लिए लेखापरीक्षा की गई थी कि क्या जलाशय में पर्याप्त जल (मात्रा और गुणवत्ता) डाला गया था, और यदि नहीं, तो उसके कारण। लेखापरीक्षा ने दोषपूर्ण योजना का खुलासा किया जिसके परिणामस्वरूप जलाशय में पर्याप्त से कम इंजेक्शन, अपनाए गए मानदंडों के अनुसार महत्वपूर्ण उपकरणों के सुधार/रखरखाव में देरी के कारण उपकरण की विफलता हुई और जल की गुणवत्ता और मात्रा प्रभावित हुई। मार्च 2019 तक, जल के इंजेक्शन के माध्यम से 100 प्रतिशत शून्यता मुआवजे के इच्छित स्तर के मुकाबले, कंपनी मुंबई हाई, नीलम और हीरा क्षेत्रों में क्रमशः 54.43 प्रतिशत, 42 प्रतिशत और 78.8 प्रतिशत का संचयी शून्यता मुआवजा प्राप्त कर सकती है। अपर्याप्त इंजेक्शन इन क्षेत्रों की पुनर्विकास योजनाओं में परिकल्पित उत्पादन को प्राप्त नहीं करने का एक कारण था।

लेखापरीक्षा इस निष्पादन लेखापरीक्षा के लिए पेट्रोलियम और प्राकृतिक गैस मंत्रालय, भारत सरकार और ओएनजीसी के अधिकारियों और कर्मचारियों द्वारा दिए गए सहयोग और सहायता के लिए आभार व्यक्त करता है। लेखापरीक्षा ने क्षेत्रीय लेखापरीक्षा और लेखापरीक्षा रिपोर्ट को अंतिम रूप देने के दौरान पेट्रोलियम ऊर्जा और अध्ययन विश्वविद्यालय, सलाहकार द्वारा दिए गए सहयोग को भी रिकॉर्ड में रखा है।

कार्यकारी सार एवं सिफारिशं

तेल और प्राकृतिक गैस निगम लिमिटेड (ओएनजीसी) देश में कच्चे तेल के घरेलू उत्पादन में लगभग 70 प्रतिशत का योगदान दे रहा है। पश्चिमी अपतट के मुंबई हाई, नीलम और हीरा क्षेत्र इस उत्पादन में लगभग 59 प्रतिशत का योगदान करते हैं। ये क्षेत्र क्रमशः 1976 और 1984 से काम कर रहे हैं और इसलिए इन परिपक्व क्षेत्रों में उत्पादन में गिरावट की आशंका है। वॉटर इंजेक्शन जलाशय के स्वास्थ्य प्रबंधन और जलाशय से कच्चे तेल की रिकवरी बढ़ाने की एक विधि है।

2014-15 से 2018-19 की अवधि के लिए ओएनजीसी के पश्चिमी अपतट में वॉटर इंजेक्शन संचालन के निष्पादन की समीक्षा करने के लिए निम्नलिखित उद्देश्यों के साथ एक अनुपालन लेखापरीक्षा आयोजित की गई थी ताकि यह आकलन किया जा सके कि क्या:

- 1. वार्षिक वॉटर इंजेक्शन बिल्ड-अप योजना में नियोजित वॉटर इंजेक्शन की आवश्यकता क्षेत्र विकास योजनाओं/प्रबंधन द्वारा अनुमोदित व्यवहार्यता रिपोर्ट में परिकल्पित आवश्यकता के अनुरूप थी और जलाशय में नियोजित मात्रा को अंतःक्षिप्त किया गया था,
- 2. जलाशय में आवश्यक मात्रा में जल डालने के लिए अपेक्षित वॉटर इंजेक्शन उपकरण उपलब्ध कराए गए,
- 3. जल की वांछित गुणवत्ता को जलाशय में इंजेक्ट किया गया था और
- 4. जंग की निगरानी, जल की इंजेक्शन लाइनों की पिगिंग, इंजेक्टरों के वर्कओवर, इंजेक्शन कुओं की स्टिमुलेशन और इंजेक्टरों के बैकवाश के माध्यम से वॉटर इंजेक्शन सुविधाओं को बनाए रखा गया था।

संक्षिप्त में परिणाम

एक से कम शून्यता प्रतिस्थापन अनुपात के साथ अपर्याप्त वॉटर इंजेक्शन था और संचयी शून्यता मुआवजा (मार्च 2019 तक) मुंबई हाई में केवल 54.43 प्रतिशत, हीरा में 78.8 प्रतिशत और नीलम के क्षेत्रों में 42 प्रतिशत था। इंजेक्शन के बुनियादी ढांचे की उम्र बढ़ने, इंजेक्शन जल की खराब गुणवत्ता के कारण लगातार पाइपलाइन रिसाव, व्यवहार्यता रिपोर्ट इनपुट को लागू न करने और कुछ हद तक उच्च गैस-तेल अनुपात वाले कुओं से उत्पादन के कारण क्षेत्र में जल का इंजेक्शन प्रभावित हुआ था। इससे

जलाशय के दबाव में तेजी से गिरावट आई और कच्चे तेल के उत्पादन पर असर पड़ा। यहां तक कि लेखापरीक्षा के अनुरोध पर कंपनी के अनुमान के अनुसार, इस कमी वाले जल के इंजेक्शन ने ओएनजीसी के लिए ₹7,802.50 करोड़ के कच्चे तेल के उत्पादन की हानि और लेखापरीक्षा अविध के दौरान सांविधिकलेवी के माध्यम से भारत सरकार को ₹3,474.29 करोड़ की राजस्व हानि को प्रभावित किया। इस नुकसान को आस्थिगत उत्पादन नहीं बल्कि तेल का स्थायी नुकसान माना जा सकता है। इसके अलावा, इस तेल घाटे के एक हिस्से के दोहन के लिए भी, अतिरिक्त निवेश की आवश्यकता है और इसकी आर्थिक तेल वसूली की दृष्टि से समीक्षा की आवश्यकता है।

लेखापरीक्षा निष्कर्ष

वॉटर इंजेक्शन की आवश्यकता की योजना और कार्यान्वयन

2014-15 से 2018-19 के दौरान पुनर्विकास योजनाओं में 5 से 46 प्रतिशत तक जल के इंजेक्शन की वार्षिक योजना आवश्यकता से कम थी। वार्षिक योजना संसाधनों की कमी के तहत तैयार की जाती है और बाधाओं को दूर करने के बजाय, उन्हें वास्तविकता के रूप में स्वीकार किया जाता है और तदनुसार योजना बनाई जाती है। यहां तक कि घटाए गए वार्षिक लक्ष्य भी हासिल नहीं किए गए।

(पैरा 3.2 और 3.3)

जल के इंजेक्शन प्लेटफॉर्म के अंत में जल के इंजेक्शन की मात्रा को नियमित रूप से मापा जाता था। 2014-15 से 2018-19 के दौरान इंजेक्शन लाइनों में कई रिसावों के साथ, इंजेक्शन की मात्रा मापी गई और जल के इंजेक्शन प्लेटफॉर्म के अंत में रिपोर्ट की गई, जलाशय में इंजेक्ट की गई मात्रा का सही माप नहीं था।

(पैरा 3.5)

कंपनी ने मुंबई हाई, नीलम और हीरा में फील्ड उत्पादन शुरू होने के छह से आठ साल बाद जल का इंजेक्शन शुरू किया। 1 अप्रैल 2019 को मुंबई हाई, नीलम और हीरा क्षेत्रों में संचयी शून्यता मुआवजा क्रमशः केवल 54.43 प्रतिशत, 42 प्रतिशत और 78.8 प्रतिशत था।

(पैरा 3.6)

इंजेक्शन की आवश्यकता की योजना और कार्यान्वयन पर लेखापरीक्षा निष्कर्षों के संदर्भ में, लेखापरीक्षा अनुशंसा करती है कि:

- वॉटर इंजेक्शनकी वार्षिक योजना क्षेत्र विकास योजनाओं से निकलनी चाहिए।
 कंपनी बनाई गई अतिरिक्त शून्यता की भरपाई के लिए एक व्यापक कैच-अप योजना तैयार कर सकती है।
- 2. बेहतर और समय पर निगरानी के लिए मानवरिहत प्लेटफॉर्म के अंत में इंजेक्ट किए गए जल की मात्रा को मापा जाना चाहिए। स्काडा को ऑनलाइन मीटर के साथ जोड़ने पर सभी प्लेटफॉर्मी पर विचार किया जा सकता है।

वॉटर इंजेक्शन सतह सुविधाएं और उपकरण

रासायनिक डोजिंग पंप जो जल के इंजेक्शन उपकरण के क्षरण से बचने के लिए वांछित गुणवत्ता बनाए रखने के लिए आवश्यक थे, वेलबोर के बंद होने और अप्रत्यक्ष रूप से कच्चे तेल के उत्पादन को प्रभावित करने वाले उपकरणों को आवश्यक उपकरण नहीं माना जाता था।

(पैरा 4.3)

कंपनी द्वारा अपनाई गई उपकरण प्रतिस्थापन नीति का पालन नहीं किया गया था और उपकरण की विफलता को रखरखाव में कमी के साथ-साथ ओवरहालिंग और प्रतिस्थापन/ सुधार में देरी के लिए जिम्मेदार ठहराया गया था।

(पैरा 4.4)

महत्वपूर्ण उपकरणों की सिस्टम उपलब्धता (उत्पादन के निर्बाध प्रवाह के लिए उपकरणों की उपलब्धता) 100 प्रतिशत के स्वीकृत लक्ष्य से कम थी। ऐसे उदाहरण देखे गए जहां उपकरण की सिस्टम उपलब्धता को 100 प्रतिशत के रूप में दिखाया गया था जब क्षेत्र की आवश्यकता को पूरा करने में उपकरण विफल रहा था या मरम्मत पर भेजे जाने पर उपकरण उपलब्ध दिखाया गया था। ईआरपी सिस्टम में डेटा का अभाव, उचित मैपिंग की कमी और ईआरपी के बाहर महत्वपूर्ण उपकरण विवरण को बनाए रखने से संकेत मिलता है कि कंपनी ने एसएपी-ईआरपी के प्लांट रखरखाव माँड्यूल का प्रभावी ढंग से उपयोग नहीं किया ताकि इच्छित लाभ प्राप्त किया जा सके।

(पैरा 4.5, 4.6, 4.7 और 4.8)

अनुचित नियोजन के कारण सुधार/प्रतिस्थापन प्रक्रिया आरंभ करने में विलम्ब हुआ था। मूल उपकरण निर्माता (ओईएम) द्वारा अनुशंसित मानदंडों/रखरखाव प्रथाओं का पालन नहीं किया गया जिसके कारण उपकरण खराब हो गया और यह पूर्ण पैमाने पर संचालन के लिए असुरक्षित हो गया। मुंबई हाई में, 52 प्रतिशत महत्वपूर्ण/प्रमुख वॉटर इंजेक्शन रोटरी उपकरण पूर्ण मरम्मत के लिए अतिदेय थे।

(पैरा 4.9 और 4.10)

वॉटर इंजेक्शन सतह सुविधाओं और उपकरणों पर लेखापरीक्षा निष्कर्षों के संदर्भ में, लेखापरीक्षा अनुशंसा करती है कि:

- 3. कंपनी को सैप प्रणाली के माध्यम से उपकरण उपलब्धता डेटा का रखरखाव सुनिश्चित करना चाहिए और सैप से सीधे रिपोर्ट तैयार करना सुनिश्चित करना चाहिए।
- 4. कंपनी को उपकरण की 'सिस्टम उपलब्धता' की गणना करते समय परिचालन आवश्यकता को पूरा करने के लिए उपकरणों की दक्षता/निष्पादन पर विचार करने की आवश्यकता है। प्रबंधन को निर्बाध संचालन के लिए उपकरणों की विश्वसनीयता और उपलब्धता सुनिश्चित करनी चाहिए।
- 5. प्रबंधन सैप प्रणाली में संयंत्र रखरखाव मॉड्यूल के तहत व्यापक रूप से कार्यात्मकताओं का उपयोग कर सकता है ताकि निष्पादन विश्लेषण में सहायता, परिचालन प्रभावशीलता में सुधार और प्रबंधन निर्णयों के लिए उपयोगी अंतर्दृष्टि प्रदान करने के अपने इच्छित लाभ प्राप्त कर सकें।
- 6. कंपनी को सिस्टम की उपलब्धता सुनिश्चित करने के लिए ओवरहालिंग और प्रतिस्थापन/ सुधार के प्रस्तावों को समय पर शुरू करना चाहिए। इसके अलावा, रखरखाव प्रथाओं के लिए मूल उपकरण निर्माता की अनुशंसा का पालन किया जाना चाहिए।
- 7. प्रतिस्थापन नीति पर फिर से विचार करने की आवश्यकता है ताकि यह सुनिश्चित किया जा सके कि मरम्मत बनाम प्रतिस्थापन निर्णय लेते समय प्राने पंपों की दक्षता पर भी विचार किया जाता है।

वॉटर इंजेक्शन की गुणवत्ता

एक अविध में कुछ गुणवत्ता मानकों को कमजोर करने के बावजूद कंपनी वांछित गुणवत्ता मानकों को पूरा करने में विफल रही। कई वॉटर इंजेक्शन प्लेटफार्मीं में जल की गुणवत्ता को कंपनी द्वारा वर्तमान में अपनाए जाने वाले गुणवत्ता मानकों से कम के रूप में देखा गया था।

(पैरा 5.2 और 5.3)

रसायनों की डोजिंग अनुशंसित स्तरों के भीतर सुनिश्चित नहीं की गई थी और बड़ी संख्या में 'शून्य' के मामलों में और रसायनों की कम डोजिंग देखी गई थी। इसके परिणामस्वरूप प्लगिंग गठन, पाइपलाइन रिसाव आदि होते हैं। जल की गुणवत्ता की रिपोर्टिंग में विसंगतियां और अनन्रूपता भी देखी गईं। गुणवत्ता माप उपकरणों के कार्य न करने के कारण महत्वपूर्ण गुणवत्ता मानकों को ग्रहण नहीं किया गया।

(पैरा 5.4 और 5.5)

जल की गुणवत्ता को वाटर इंजेक्शन प्लेटफॉर्म पर मापा जाता है जहां से इसे भेजा गया था और जलाशय में डाले गए जल की गुणवत्ता की सूचना दी। हालांकि, जल की इंजेक्शन लाइनों में जंग लगने के कारण, जल की गुणवत्ता कुओं के रास्ते में खराब हो गई। इस प्रकार, जलाशय में डाले गए जल की वास्तविक गुणवत्ता वाटर इंजेक्शन प्लेटफॉर्म पर रिपोर्ट की गई गुणवत्ता से कम थी।

(पैरा 5.6)

वॉटर इंजेक्शन की गुणवत्ता पर लेखापरीक्षा निष्कर्षों के संदर्भ में, लेखापरीक्षा अनुशंसा करती है कि:

- 8. सैप सिस्टम में डाटा रिकॉर्ड करने और फीडिंग करते समय उचित सावधानी सुनिश्चित की जानी चाहिए ताकि जलाशय में इंजेक्शन के लिए आवश्यक वांछित गुणवत्ता मानकों की निगरानी और सुनिश्चित किया जा सके।
- 9. मानदंडों के अनुसार पर्याप्त रसायनों की डोजिंगको बनाए रखा जाना चाहिए ताकि समय पर सुधारात्मक कार्रवाई के लिए जल के गुणवत्ता मानकों की निगरानी की जा सके।

- 10. कंपनी को निगरानी और समय पर सुधारात्मक कार्रवाई के लिए भविष्य में रासायनिक इंजेक्शन प्रणाली के सिस्टम और उपकरण उपलब्धता के डेटा को ठीक से बनाए रखने की आवश्यकता है।
- 11. जलाशय में डाले गए जल की आवश्यक गुणवत्ता की निगरानी पूरे वॉटर इंजेक्शन प्रक्रिया के दौरान की जानी चाहिए और सभी मापदंडों के लिए कुएं के अंत तक सुनिश्चित की जानी चाहिए।

वॉटर इंजेक्शन पाइपलाइनों और इंजेक्टरों का रखरखाव

जंग निगरानी की रिपोर्ट से पता चला कि वॉटर इंजेक्शन पाइपलाइनों की जंग दर सुरक्षित सीमा से ऊपर थी। पिगिंग पाइपलाइनों में जमा मलबे को हटाने, रोगाणुओं के नियंत्रण और पाइपलाइन अखंडता की निगरानी में मदद करता है। आवश्यकता के मुकाबले पिगिंग ऑपरेशन में पर्याप्त कमी थी और पिगिंग के नमूनों का अपर्याप्त विश्लेषण था। आंतरिक जंग वॉटर इंजेक्शन लाइनों की समय से पहले विफलता का प्राथमिक कारण था। जंग के मुद्दों को कम करने के बजाय, कंपनी ने वॉटर इंजेक्शन लाइनों के डिजाइन सेवा जीवन को 25 से घटाकर 15 वर्ष कर दिया। रिसाव की तारीख और मरम्मत/प्रतिस्थापन की तारीख के बीच समय अंतराल देखा गया जिससे जल के इंजेक्शन की काफी हानि हुई।

(पैरा 6.1, 6.2 और 6.3)

एक कुएं के निष्पादन को बहाल करने या सुधारने के लिए, वर्कओवर या कुएं की सर्विसिंग गतिविधियों को शुरू किया जाता है। मुंबई हाई फील्ड में, नियोजित कुओं के विरुद्ध केवल 49.59 प्रतिशत कुओं में वर्कओवर किया गया था। नीलम और हीरा के क्षेत्रों में 15-20 साल के अंतराल के बाद इंजेक्शन कुओं की देख रेख की गई। इसका जलाशय के दबाव और अंतिम तेल रिकवरी पर दीर्घकालिक प्रभाव पड़ा।

(पैरा 6.4)

वेल स्टिमुलेशन एक वेल इंटरवेंशन प्रक्रिया है जिसे अपनाया जाता है क्योंकि जल के इंजेक्शन वाले कुओं में प्लिगंग की संभावना होती है। स्वीकृत कार्यभार के मुकाबले मुंबई हाई फील्ड और नीलम और हीरा फील्ड में क्रमशः केवल 18 प्रतिशत और 39 प्रतिशत में स्टिमुलेशन कार्य किए गए। इंजेक्शन कुओं के लिए समर्पित स्टिमुलेशन पोत किराए पर लेने के बाद भी स्थिति में सुधार नहीं हुआ।

(पैरा 6.5)

वॉटर इंजेक्शन पाइपलाइनों और इंजेक्टरों के रखरखाव पर लेखापरीक्षा निष्कर्षों के संदर्भ में, लेखापरीक्षा अन्शंसा करती है कि:

- 12. बड़ी संख्या में लाइनों की समयपूर्व विफलता को ध्यान में रखते हुए, कंपनी जंग निगरानी प्रणाली को तत्काल मजबूत कर सकती है। भविष्य में जंग की निगरानी के लिए मुख्य इंजेक्शन पंपों से दूर और स्थानों को भी लिया जाना चाहिए।
- 13. कंपनी को पाइपलाइनों के स्वास्थ्य को सुनिश्चित करने और इसके तेजी से क्षरण को रोकने के लिए लाइनों की पिगिंग की परिभाषित आवृत्ति का पालन करना चाहिए। कंपनी को प्रत्येक पिगरन पर नमूने लेकर एसओपी के अनुसार सख्ती से पिगिंग ऑपरेशन का पालन करना चाहिए और सुधारात्मक कार्यों के लिए आवश्यक गुणवत्ता मानकों और माइक्रोबियल विकास के लिए उनका विश्लेषण करना चाहिए।
- 14. कंपनी को इन वॉटर इंजेक्शन कुओं को समय पर ढंग से काम करने और तदनुसार कार्य योजना तैयार करने के लिए एक तंत्र स्थापित करने की आवश्यकता है। इससे कंपनी को जल के इंजेक्शन वाले कुओं को स्वस्थ स्थिति में रखने और अंततः तेल कुओं की उत्पादकता बढ़ाने के लिए जलाशय के दबाव को बनाए रखने के लक्ष्य को प्राप्त करने में मदद मिलेगी।
- 15. कंपनी को अपने वर्तमान अभ्यास/नीति की समीक्षा करनी चाहिए ताकि जल के इंजेक्शन वाले कुओं को सर्वोत्तम उद्योग प्रथाओं के अनुरूप बनाया जा सके। इससे सिस्टम या वेलबोर को गंभीर नुकसान होने से पहले निवारक उपाय करने और कुओं की इंजेक्शन क्षमता में सुधार करने में मदद मिलेगी।
- 16. कंपनी को कुओं की इंजेक्शन क्षमता में सुधार और जल के इंजेक्शन को बढ़ाने के लिए निर्धारित अविध के अनुसार नियमित रूप से कुओं का बैकवाश करना चाहिए। साथ ही जल के इंजेक्शन के लिए नियोजित/जुटाए गए संसाधनों को उत्पादक कुओं की आवश्यकताओं से अलग माना जा सकता है।

अपर्याप्त वॉटर इंजेक्शन का प्रभाव

क्षेत्रों की स्थापना के बाद से अपर्याप्त जल के इंजेक्शन के कारण जलाशय के दबाव में लगातार गिरावट आई थी जिससे कच्चे तेल की उत्पादकता और इसकी अंतिम वस्ली प्रभावित हुई थी। जलाशय से उच्च गैस उत्पादन द्वारा जलाशय के दबाव में गिरावट को और अधिक बल दिया गया है। वॉटर इंजेक्शन के महत्व, इसके वितरण और जलाशय स्वास्थ्य के रखरखाव पर मंत्रालय की आवधिक अनुशंसा को पूरी तरह से लागू नहीं किया गया था।

(पैरा 7.1)

कंपनी के निष्पादन बेंचमार्किंग समूह ने दुनिया की अग्रणी अन्वेषण और उत्पादन कंपनियों के साथ 'जलाशय स्वास्थ्य' के प्रमुख निष्पादन संकेतक को बेंचमार्क नहीं किया। इसके बजाय, इसने अपनी रणनीतिक व्यावसायिक इकाइयों से प्राप्त इनपुट के आधार पर स्थिर लक्ष्य निर्धारित किए। इसके अलावा, प्रभावी 2019-20, पैरामीटर 'जलाशय स्वास्थ्य' प्रबंधन द्वारा जलाशय स्वास्थ्य की निगरानी की कमी को दर्शाता निष्पादन अनुबंध का हिस्सा नहीं है।

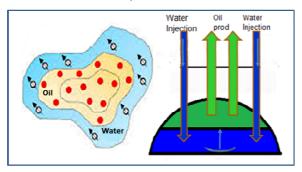
(पैरा 7.2)

जल के इंजेक्शन में कमी कच्चे तेल के कम उत्पादन के महत्वपूर्ण कारणों में से एक है। लेखापरीक्षा के अनुरोध पर, कंपनी के आंतरिक अनुसंधान संस्थान, जलाशय अध्ययन संस्थान (आईआरएस) ने कच्चे तेल पर पहुंचने के लिए मौजूदा सिमुलेशन मॉडल का इस्तेमाल किया जो कम जल के इंजेक्शन के कारण उत्पादित नहीं किया जा सका और लेखापरीक्षा अविध के दौरान 3.695 एमएमटीके तेल की कमी की गणना की। लेखापरीक्षा ने वास्तविक परिचालन हानि जो 3.79 एमएमटी थी, पर विचार करते हुए आईआरएस उद्धृत तेल घाटे पर फिर से काम किया। कम जल के इंजेक्शन के कारण 3.79 एमएमटी तेल की कमी का मूल्य ₹11,276.79 करोड़ आंका गया। इसमें से, तैधानिक वसूली पर विचार करने के बाद ओएनजीसी के लिए तेल घाटे का मूल्य ₹7,802.50 करोड़ था और शेष ₹3,474.29 करोड़ भारत सरकार को राजस्व हानि है।

(पैरा 7.3)

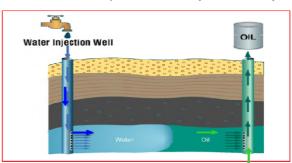
अपर्याप्त वॉटर इंजेक्शन के प्रभाव पर लेखापरीक्षा निष्कर्षों के संदर्भ में, लेखापरीक्षा अनुशंसा करती है कि:

17. कंपनी पुनर्विकास योजना के स्तर पर इंजेक्शन की मात्रा सुनिश्चित करके प्रेशर सिंक को संबोधित करने के लिए एक समयबद्ध कार्य योजना तैयार कर सकती है और जल के इंजेक्शन के असमान क्षेत्र प्रसार से बच सकती है।


18. कंपनी को अपने संचालन के सही निष्पादन का मूल्यांकन करने के लिए प्राप्त करने योग्य आधार के बजाय अंतर्राष्ट्रीय/ उद्योग के सर्वश्रेष्ठ निष्पादन के बेंचमार्क पर विचार करते हुए लक्ष्य तय करना चाहिए। निष्पादन निगरानी और बेंचमार्किंग में जल के इंजेक्शन का भार बढ़ाया जा सकता है।

प्रबंधन/मंत्रालय ने उपरोक्त अनुशंसा को स्वीकार किया (फरवरी/जून 2021) और आश्वासन दिया कि प्रक्रियाओं को मजबूत करने के लिए आवश्यक कदम उठाए जा रहे हैं। एग्जिट कांफ्रेंस (सितंबर 2021) के दौरान, कंपनी द्वारा उपकरणों की ओवरहालिंग, जल की गुणवत्ता में सुधार, मानव रहित प्लेटफार्मों पर मीटर की स्थापना और उन्हें स्काडा से जोड़ने पर शुरू की गई कार्रवाई के बारे में बताया गया।

अध्याय 1 <u>परि</u>चय


ऑयल एंड नेचुरल गैस कॉर्पोरेशन लिमिटेड (ओएनजीसी) कंपनी, एक महारत्न सार्वजिनक क्षेत्र का उपक्रम (पीएसयू) है, जो देश में कच्चे तेल के घरेलू उत्पादन में लगभग 70 प्रतिशत का योगदान देता है, जिसमें से लगभग 59 प्रतिशत पिश्चमी अपतटीय नामित क्षेत्रों से उत्पादित होता है। तेल उत्पादन को तीन विशिष्ट चरणों में बांटा गया है, अर्थात प्राथमिक, द्वितीयक एंव तृतीयक। प्राथमिक चरण के दौरान, प्राकृतिक जलाशय ऊर्जा उत्पादन को संचालित करती है। दबाव बढ़ाने के लिए जलाशय में बाहरी तरल पदार्थ, आमतौर पर जल या गैस के इंजेक्शन द्वारा द्वितीयक चरण की सहायता की जाती है और इस तरह ऑयल रिकवरी को प्रोत्साहित किया जाता है। वाटर फ्लिडेंग सबसे प्रमुख ऑयल रिकवरी पद्धित है। तृतीयक चरण में, जलाशय में फंसे अविशिष्ट तेल के उत्पादन के लिए एन्हांस्ड ऑयल रिकवरी¹ (ईओआर) पद्धित की आवश्यकता होती है। प्राथमिक तथा द्वितीयक विधियाँ संयुक्त रूप से 50 प्रतिशत तक तेल का उत्पादन करती हैं और जलाशय (अविशिष्ट तेल) में फंसे शेष तेल के लिए, तृतीयक चरण में एन्हांस्ड ऑयल रिकवरी (ईओआर) विधि उत्पन्न होती है।

चित्र 1.1: वाटर इंजेक्शन: दबाव रखरखाव

उत्पादन कुएं के आसपास कई इंजेक्शन कुओं के माध्यम से जल को एक्वीफर में इंजेक्ट किया जाता है।

चित्र 1.2: वाटर इंजेक्शन: स्वीप (वाटर फ्लडिंग)

स्वीप प्रभाव पैदा करने के लिए जल को ऑयल क्षेत्र में इंजेक्ट किया जाता है।

[ै] ईओआर जलाशय में सामान्य रूप से नहीं मौजूद सामग्री के इंजेक्शन द्वारा तेल की रिकवरी की एक विधि है।

जलाशय के दबाव को बनाए रखने के लिए जल को इंजेक्ट किया जाता है (जिसे शून्य प्रतिस्थापन के रूप में जाना जाता है) और जलाशय से तेल को स्वीप या हटाने हेतु एंव इसे कुएं की ओर धकेलने के लिए भी डाला जाता है। वॉटर इंजेक्शन न केवल जल की कम लागत के कारण तेल उत्पादन बढ़ाने के लिए सबसे उपयोगी तकनीकों में से एक है, बिल्क जल की विशेषताओं के कारण भी है जो फंसे हुए तेल को कुशलता से साफ करने में मदद करता है। यह दुनिया भर में सभी आकारों के तेल क्षेत्रों में सबसे सफलतापूर्वक उपयोग की जाने वाली द्वितीयक तेल पुनर्प्राप्ति विधि है।

1.1 अपतट वॉटर इंजेक्शन प्रक्रिया

वॉटर इंजेक्शन प्रक्रिया में समुद्री जल लिफ्ट पंपों द्वारा लगभग 30 मीटर की गहराई से कच्चा समुद्री जल खींचना शामिल है। सस्पेंडेड ठोस, जैविक विकास तथा घुलित ऑक्सीजन को हटाने के लिए इस जल को फ़िल्टर किया जाता है और रसायनों के साथ उपचारित किया जाता है। उपचारित जल को इंजेक्शन पंपों द्वारा विभिन्न कूप प्लेटफार्मी पर पंप किया जाता है। वॉटर इंजेक्शन सुविधाओं में वॉटर इंजेक्शन प्रसंस्करण प्लेटफॉर्म, वॉटर इंजेक्शन लाइन, वॉटर इंजेक्शन कुआं/ स्ट्रिंग², प्रत्येक कुएं/ कुओं में इंजेक्ट किए गए जल की मात्रा को मापने के लिए मीटरिंग सिस्टम इत्यादि शामिल हैं।

1.2 म्ंबई हाई, नीलम एंव हीरा क्षेत्रों का विकास

मुंबई हाई क्षेत्र, पश्चिमी अपतट में मुंबई शहर के पश्चिम-उत्तर पश्चिम में लगभग 165 किमी पर अरब सागर में स्थित है, जो भारत में सबसे बड़ा और सबसे उर्वरक तेल क्षेत्र है और जिसमे मई 1976 से उत्पादन शुरु किया गया था। इस क्षेत्र को दो ब्लॉकों - उत्तर एंव दिक्षण में विभाजित किया गया है और इसका 1,696 मिलियन मीट्रिक टन के प्रारंभिक तेल-स्थान का अनुमान लगाया गया है। वर्ष 1976 के बाद से विकास कार्यक्रमों की शृंखला के माध्यम से मुंबई हाई फील्ड ने समय के साथ प्रगति की। क्षेत्र से ऑयल रिकवरी में सुधार हेतु वर्ष 2000-01 के दौरान एक प्रमुख पुनर्विकास³ कार्यक्रम शुरू किया

² इंजेक्शन कुआँ/ स्ट्रिंग - इंजेक्शन कुआँ एक कुआँ है जिसके माध्यम से जलाशय के दबाव को बनाए रखने के लिए जलाशय में जल डाला जाता है। इंजेक्शन वेल में सिंगल स्ट्रिंग या दोहरे स्ट्रिंग्स हो सकते हैं।

पुनर्विकास योजनाएं चल रही योजनाएं हैं। नए इनपुट (कुओं/इंजेक्शन कुओं का उत्पादन), सुविधाओं के साथ नए प्लेटफॉर्म, बाईपास किए गए तेल को लक्षित करने के लिए पाइपलाइन और जल के इंजेक्शन के माध्यम से जलाशय के दबाव को बनाए रखने जैसे बेहतर तेल रिकवरी (आईओआर) विधियों के माध्यम से तेल रिकवरी को बढ़ाने के लिए उन्हें लागू किया जाता है।

गया था। मुंबई हाई नॉर्थ फील्ड में वॉटर इंजेक्शन अप्रैल 1984 में शुरू किया गया था और विकास के तीन दौर वर्ष 2001 से 2018 तक हुए थे। अप्रैल 2019 में स्वीकृत प्नर्विकास योजना (चरण IV) वर्तमान में निष्पादन के अधीन है।

मुंबई हाई साउथ फील्ड में वर्ष 1980 में उत्पादन शुरू हुआ और वर्ष 1987 में वॉटर इंजेक्शन शुरू हुआ। फरवरी 2019 में स्वीकृत पुनर्विकास (चरण IV) योजना वर्तमान में निष्पादन के अधीन है।

सितंबर 1977 में हीरा क्षेत्र की खोज की गई तथा नवंबर 1984 में उत्पादन शुरू किया गया। हीरा फील्ड ने लगभग छह वर्षों तक डिप्लिशन ड्राइव⁴ के तहत तेल का उत्पादन किया तथा सितंबर 1990 में वॉटर इंजेक्शन शुरू किया गया। इस क्षेत्र में वर्ष 2001-05 के दौरान विकास के दो दौर हुए। हीरा पुनर्विकास योजनाएं चरण। एंव ॥ (एचआरपी। एंव ॥) क्रमशः वर्ष 2006 और वर्ष 2012 से शुरू की गईं। एचआरपी ॥ को मई 2019 में अनुमोदित किया गया था और वर्तमान में निष्पादन के अधीन है।

नीलम क्षेत्र वर्ष 1989 में शुरू हुआ तथा वर्ष 1993-94 से पूर्ण विकास प्रारंभ हुआ। वर्ष 1994 में दबाव रखरखाव के लिए क्षेत्र में वॉटर इंजेक्शन की शुरुआत की गई थी। ऑयल रिकवरी में सुधार हेतु, एक प्रमुख योजना, जैसे 'इंप्रूव्ड ऑयल रिकवरी (आईओआर)' वर्ष 2001-02 में लागू की गई थी तथा वर्ष 2005-06 तक पूरा किया गया था। वर्ष 2015 में श्रू की गई नीलम प्नर्विकास योजना (एनआरपी) वर्तमान में प्रगति पर है।

1.3 वॉटर इंजेक्शन अवसंरचना

पश्चिमी अपतट में, सात वॉटर इंजेक्शन प्लेटफॉर्म हैं, पांच मुंबई हाई फील्ड में तथा दो नीलम-हीरा फील्ड में हैं जिनकी कुल क्षमता 20.57 लाख बीडब्ल्यूपीडी (प्रति दिन बैरल जल) है, जिन्हें वर्ष 1984 से वर्ष 2006 के दौरान चालू किया गया था। उपचारित जल को 315 कुओं/ स्ट्रिंग्स (मुंबई हाई फील्ड) में 102 वेलहेड प्लेटफॉर्म तथा 80 इंजेक्शन स्ट्रिंग्स (नीलम एंव हीरा फील्ड) में 30 वेलहेड प्लेटफॉर्म के माध्यम से इंजेक्ट किया जाता है।

3

⁴ सभी कुओं से तेजी से बढ़ते गैस-तेल अनुपात की विशेषता एक डिप्लिशन -ड्राइव जलाशय है। जलाशय का दबाव कम होने के बाद, पूरे जलाशय में घोल से गैस निकलती है। यह बहुत अक्षम है क्योंकि यह अपेक्षाकृत कम मूल तेल का उत्पादन करेगा।

2021 की प्रतिवेदन संख्या 19

मुंबई हाई एंव नीलम तथा हीरा क्षेत्रों में निर्मित वॉटर इंजेक्शन अवसंरचना का विवरण तालिका 1.1 में दिया गया है।

तालिका 1.1: वॉटर इंजेक्शन अवसंरचना/व्यय

विवरण	मुंब	वई हाई फील्ड	नील	ाम व हीरा फील्ड्स
	संख्या	व्यय	संख्या	व्यय
		(₹ करोड़ में)		(₹ करोड़ में)
प्लेटफार्म	5	2,607.01	2	928.49
कुएं	260	1,017.51	73	647.55
पाइपलाइनें	130	3,945.16	33	930.39
कुल		7,569.68		2506.43
औसत वार्षिक		731.30		232.64
ओपेक्स				
स्रोतः केंद्रीय खातों ((मुंबई क्षेत्र), ओएन	नजीसी से प्राप्त आंकड़े।		

अध्याय 2

अधिदेश, लेखापरीक्षा का दायरा और कार्यप्रणाली

अनुपालन लेखापरीक्षा रिपोर्ट नियंत्रक एवं महालेखापरीक्षक (कर्तव्य, शक्तियां तथा सेवा की शर्तें) अधिनियम, 1971 की धारा 19-ए के प्रावधानों के तहत तैयार की गई है। लेखापरीक्षा तथा लेखा पर विनियम, 2007 और भारत के नियंत्रक एंव महालेखापरीक्षक के अनुपालन लेखापरीक्षा दिशानिर्देशों के अनुरूप लेखापरीक्षा की गई है।

2.1 कार्यक्षेत्र एंव लेखापरीक्षा उद्देश्य

लेखापरीक्षा का कार्यक्षेत्र, कंपनी के पश्चिमी अपतटीय क्षेत्र⁵ में वर्ष 2014-15 से वर्ष 2018-19 की अविध के लिए (बैकवर्ड तथा फॉरवर्ड लिंकेज के साथ) वॉटर इंजेक्शन के निष्पादन की समीक्षा करना है।

लेखापरीक्षा का उद्देश्य यह निर्धारित करना था कि क्या:

- 1. 'वार्षिक वॉटर इंजेक्शन बिल्ड-अप योजना' में नियोजित वॉटर इंजेक्शन की आवश्यकता क्षेत्र विकास योजनाओं/प्रबंधन द्वारा अनुमोदित व्यवहार्यता रिपोर्ट में परिकल्पित आवश्यकता के अनुरूप थी और जलाशय में नियोजित मात्रा को अंतःक्षेपित किया गया था,
- 2. जलाशय में आवश्यक मात्रा में जल को अंतःक्षेपित करने हेतु आवश्यक वॉटर इंजेक्शन उपकरण उपलब्ध कराए गए थे।
- 3. जलाशय में जल की वांछित ग्णवत्ता को अंतःक्षेपित किया गया था, और
- 4. जंग की निगरानी, वॉटर इंजेक्शन लाइनों की पिगिंग, इंजेक्टरों के वर्कओवर⁶, इंजेक्शन कुओं की पाइपलाइनों के स्टीमुलेशन परिचालन⁷ और इंजेक्टरों के बैकवाश के माध्यम से वॉटर इंजेक्शन स्विधाओं को बनाए रखा गया था।

पश्चिमी अपतटीय संपत्तियों में मुंबई हाई, नीलम और हीरा और बेसिन और सैटेलाइट शामिल हैं। जबिक मुंबई हाई और नीलम और हीरा मुख्य रूप से तेल क्षेत्र हैं, बेसिन और सैटेलाइट में गैस क्षेत्र शामिल हैं। इसके अलावा, बेसिन और सैटेलाइट में जल का इंजेक्शन मुख्य रूप से दो क्षेत्रों के बीच अवरोध पैदा करने के लिए अपनाया जाता है। बेसिन और सैटेलाइट को वर्तमान लेखापरीक्षा में शामिल नहीं किया गया है।

वर्कओवर या वेल सर्विसिंग कुएं के प्रदर्शन को बहाल करने या सुधारने के लिए कुएं पर किया गया कोई भी ऑपरेशन है।

इंजेक्शन क्षमता में सुधार के लिए एक अच्छी तरह से हस्तक्षेप प्रक्रिया।

2.2 लेखापरीक्षा मानदंड

लेखापरीक्षा के लिए मानदंड कंपनी द्वारा अपनाई गई नीतियों/ दिशानिर्देशों/ मानदंडों से तैयार किए गए थे जैसा कि इसके मैनुअल/ आंतरिक दस्तावेजों/निर्धारित प्रक्रियाओं में दर्शाया गया है जो कि जलाशय के स्वास्थ्य, इंजेक्शन जल की गुणवत्ता/मात्रा, कंपनी और मूल उपकरण निर्माता (ओईएम) के उपकरणों के रखरखाव/ प्रतिस्थापन/ ओवरहालिंग मानदंडों, जल इंजेक्शन पाइपलाइनों और कुओं/ तारों आदि के रखरखाव और निगरानी तंत्र से संबंधित है। कंपनी द्वारा नियुक्त अंतरराष्ट्रीय सलाहकारों/इसके आंतरिक अनुसंधान संगठनों की रिपोर्टों पर भी विचार किया गया (अनुलग्नक-1)।

2.3 लेखापरीक्षा कार्यप्रणाली

दिनांक 8 अप्रैल 2019 को प्रबंधन के साथ एक प्रवेश सम्मेलन आयोजित किया गया जिसमें लेखापरीक्षा के उद्देश्यों, कार्यक्षेत्र और कार्यप्रणाली पर चर्चा की गई। फील्ड ऑडिट में सूचना/दस्तावेजों का संग्रह एंव समीक्षा, प्रबंधन के साथ विचार-विमर्श शामिल था और अगस्त 2019 से अप्रैल 2020 तक आयोजित किया गया था। पेट्रोलियम ऊर्जा एंव अध्ययन विश्वविद्यालय (यूपीईएस), देहराद्न को लेखापरीक्षा को तकनीकी मार्गदर्शन प्रदान करने के लिए तकनीकी सलाहकार के रूप में नियुक्त किया गया था। ड्राफ्ट लेखापरीक्षा रिपोर्ट प्रबंधन/पेट्रोलियम तथा प्राकृतिक गैस मंत्रालय को एक साथ दिनांक 15 दिसंबर 2020 को जारी की गई थी। प्रबंधन (फरवरी 2021) और मंत्रालय (जून 2021) की प्रतिक्रिया को लेखापरीक्षा रिपोर्ट में उपयुक्त रूप से शामिल किया गया है। दिनांक 8 सितंबर 2021 को आयोजित एग्जिट कांफ्रेंस के दौरान प्रबंधन एंव मंत्रालय द्वारा व्यक्त की गई प्रतिक्रिया तथा विचारों को भी रिपोर्ट में उपयुक्त रूप से शामिल किया गया है।

2.4 अभिस्वीकृति

हम लेखापरीक्षा के सुचारू संचालन हेतु मंत्रालय एंव ओएनजीसी के प्रबंधन तथा कर्मचारियों द्वारा दिए गए सहयोग को रिकॉर्ड में रखते हैं। हम फील्ड लेखापरीक्षा एंव लेखापरीक्षा रिपोर्ट को अंतिम रूप देने के दौरान यूनिवर्सिटी ऑफ पेट्रोलियम एनर्जी एंड स्टडीज द्वारा दिए गए सहयोग को भी रिकॉर्ड में रखते हैं।

अध्याय 3

वॉटर इंजेक्शन की आवश्यकता की योजना एवं कार्यान्वयन

जलाशय के दबाव को बनाए रखते हुए तेल रिकवरी को बढ़ाने के लिए एक तेल जलाशय में वॉटर इंजेक्शन किया जाता है। यह 'शुन्य प्रतिस्थापन' यानी वॉटर इंजेक्शन द्वारा पूरा किया जाता है ताकि दबाव को उसके प्रारंभिक स्तर तक बढ़ाया जा सके और उसे उस दबाव के पास बनाए रखा जा सके। इसलिए, पर्याप्त मात्रा में जल को अंतःक्षेपित करने की आवश्यकता है।

3.1 वॉटर इंजेक्शन की आवश्यकता का अनुमान

वॉटर इंजेक्शन की आवश्यकता की मात्रा जलाशय स्टीमुलेशन मॉडल पर आधारित है। शून्यता प्रतिस्थापन अनुपात अंतःक्षेपित किए गए द्रव की मात्रा का उत्पादित तरल पदार्थ की मात्रा का अनुपात है। शून्यता प्रतिस्थापन अनुपात जलाशय के भीतर दबाव वितरण को प्रभावित करता है तथा निस्संदेह तेल उत्पादन दर को प्रभावित करता है। पूर्ण रिक्तीकरण प्रतिस्थापन जलाशयों के लिए सर्वोत्तम है तथा एक सामान्य जलाशय प्रबंधन अभ्यास है। बेहतर जलाशय प्रबंधन और सर्वोत्तम पुनर्प्राप्ति के लिए, जल का इंजेक्शन उत्पादित तरल पदार्थ का कम से कम 100 प्रतिशत होना चाहिए।

3.2 वॉटर इंजेक्शन मात्रा की योजना बनाना

परिपक्व क्षेत्रों से तेल की रिकवरी में सुधार के लिए पुनर्विकास योजनाएं कार्यान्वित की जाती हैं। ऐसी योजनाओं में निवेश परिकल्पित वृद्धिशील उत्पादन प्रोफ़ाइल के आधार पर उचित है। इस प्रकार तैयार की गई उत्पादन प्रोफ़ाइल उत्पादन को प्राप्त करने के लिए वॉटर इंजेक्शन स्तरों को निर्धारित करती है। पुनर्विकास योजनाओं को शत-प्रतिशत शून्यीकरण प्रतिस्थापन माना गया है। पुनर्विकास योजनाओं को बोर्ड द्वारा अनुमोदित किया जाता है जबिक वार्षिक योजनाएँ परिसंपत्ति¹⁰ स्तर पर तैयार की जाती हैं। अनुमोदित पुनर्विकास योजनाओं तथा वार्षिक जल अन्तःक्षेपण निर्माण योजना में उपलब्ध कराए गए जल अन्तःक्षेपण की आवश्यकता तालिका 3.1 एवं 3.2 में दी गई है।

⁸ तेल एवं गैस उत्पादन प्रौद्योगिकी संस्थान (आईओजीपीटी), ओएनजीसी।

⁹ संदर्भः स्टैनफोर्ड यूनिवर्सिटी का शोध पत्र, दिसंबर 2015।

¹⁰ परिसंपत्ति का तात्पर्य उत्पादन गतिविधियों में शामिल ओएनजीसी में इकाई से है।

तालिका 3.1:	मंबर्ड हार्ड	फील्ड	(प्रतिदिन	जल	कार्व	बैरल र	ने आंकड़े)	(बीडब्ल्यूपीडी)
(111(14)1 0.11.	144 61A	1714 3	(411114)	0141	-171	4111	ו פוופו	(41344 4 1131)

वर्ष	Ŧ	बई हाई साः	उथ	ਸ਼ੁੱ	बई हाई नॉ	र्थ	मुंबई हाई टोटल			
	पुनर्विकास	वार्षिक	अंतर	पुनर्विकास	वार्षिक	अंतर	पुनर्विकास	वार्षिक	अंतर	प्रतिशत
	योजना-	निर्माण		योजना-	निर्माण		योजना-	निर्माण		कमी
	पीएच-III	योजना		पीएच-III	योजना		पीएच-III	योजना		
2014-15	623728	604000	19728	489843	456900	32943	1113571	1060900	52671	5
2015-16	782253	652300	129953	542895	427800	115095	1325148	1080100	245048	18
2016-17	786461	621900	164561	562031	375700	186331	1348492	997600	350892	26
2017-18	784145	622300	161845	559416	382360	177056	1343561	1004600	338961	25
2018-19	793774	577300	216474	548022	407300	140722	1341796	984600	357196	27
स्रोतः मुंबई	हाई नॉर्थ	और मुंबई ह	ाई साउथ पृ	नर्विकास योज	नना चरण-।।	।, वार्षिक वि	बेल्ड-अप योज	नाएं		

तालिका 3.2: नीलम और हीरा क्षेत्र (बैरल में प्रतिदिन के जल के आंकड़े)

वर्ष		नीलम			हीरा		नीलम और हीरा				
	पुनर्विकास	वार्षिक	अंतर	पुनर्विकास	वार्षिक	अंतर	पुनर्विकास	वार्षिक	अंतर	प्रतिशत	
	योजना	निर्माण		योजना	निर्माण		योजना	निर्माण		कमी	
		योजना			योजना			योजना			
2014-15	98225	61811	36414	202099	128550	73549	300324	190361	109963	37	
2015-16	74625	62508	12117	205459	89542	115917	280084	152050	128034	46	
2016-17	88130	96963	-8833	209234	142292	66942	297364	239245	58119	20	
2017-18	120813	79800	41013	174848	165500	9348	295661	245300	50361	17	
2018-19	142366	113808	28558	184393	172125	12268	326759	285933	40826	12	
स्रोतः मासि	क प्रगति रि	पोर्ट और 🛭	नीलम एंव ह	ीरा की पुन	र्विकास योज	नगएं ।					

जैसा कि उपरोक्त तालिकाओं से देखा जा सकता है, वार्षिक बिल्ड-अप योजना के अनुसार जल अन्तःक्षेपण की मात्रा हमेशा पुनर्विकास योजनाओं के अनुसार आवश्यकता से कम रही है। मुंबई हाई फील्ड के मामले में इन दोनों योजनाओं के बीच का अंतर बढ़ता ही जा रहा है।

इस संबंध में, लेखापरीक्षा ने देखा कि कंपनी ने स्वीकृत पुनर्विकास योजनाओं के अनुसार इंजेक्शन की आवश्यकता के बजाय प्राप्त करने योग्य वॉटर इंजेक्शन मात्रा के आधार पर वार्षिक बिल्ड-अप वॉटर इंजेक्शन योजना तैयार की, जो 100 प्रतिशत शून्यता मुआवजे पर आधारित थी। वार्षिक वॉटर इंजेक्शन बिल्ड-अप योजना रिग/ स्टीमुलेशन पोत, वॉटर इंजेक्शन अवसंरचना और पाइपलाइन नेटवर्क आदि की उपलब्धता को ध्यान में रखते हुए बाधाओं के तहत तैयार की जाती है। बाधाओं को दूर करने के बजाय, बाधाओं को वास्तविकता के रूप में स्वीकार किया गया तथा तदनुसार नियोजन प्रक्रिया में बदलाव किया गया। इसके परिणामस्वरूप लगातार कम संचयी शून्यता क्षतिपूर्ति तथा जलाशय के दबाव में गिरावट आई है और अंततः कच्चे तेल के उत्पादन और रिकवरी को प्रभावित किया है।

प्रबंधन ने स्वीकार किया (जनवरी/ फरवरी 2020) कि कम संचयी शून्यता क्षितिपूर्ति उपलब्ध संसाधनों के अनुरूप कम नियोजित इंजेक्शन एंव आवश्यकता से कम मात्रा में वॉटर इंजेक्शन की योजना के कारण है। इसके परिणामस्वरूप अतिरिक्त शून्यता का निर्माण हुआ, जलाशय के दबाव में और गिरावट आई तथा अंततः कच्चे तेल के उत्पादन/रिकवरी को प्रभावित किया।

प्रबंधन ने आगे कहा (फरवरी 2020) कि नीलम में जलभृत समर्थन से आंशिक शून्यता क्षातिपूर्ति (20-25 प्रतिशत) है। तथापि, लेखापरीक्षा ने देखा कि उपरोक्त पर विचार करने के बाद भी, नियोजित शून्यता प्रतिस्थापन अनुपात आवश्यकता से कम है।

अन्शंसा संख्या 1

वॉटर इंजेक्शन के लिए वार्षिक योजना, क्षेत्र विकास योजनाओं से निकलनी चाहिए। कंपनी बनाई गई अतिरिक्त शून्यता की भरपाई के लिए एक व्यापक कैच-अप योजना तैयार कर सकती है।

3.3 वॉटर इंजेक्शन योजना का कार्यान्वयन

विकास योजनाओं के अनुसार न केवल वॉटर इंजेक्शन की नियोजित मात्रा उप इष्टतम थी, बल्कि कम किए गए वार्षिक लक्ष्य भी प्राप्त नहीं किए गए थे। वर्ष 2014-15 से वर्ष 2018-19 के दौरान वार्षिक निर्माण योजना के संदर्भ में वास्तविक वॉटर इंजेक्शन मात्रा तालिका 3.3 में दी गई है। क्षेत्रवार स्थिति अनुलग्नक-॥ में दी गई है।

तालिका 3.3: वार्षिक योजना के संदर्भ में जल इंजेक्शन

	3	मुंबई हाई	नीलम और हीरा			
<u>वर्ष</u> ————	वास्तविक इंजेक्शन (बीडब्ल्यूपीडी)	वार्षिक योजना के संदर्भ में कमी (<i>प्रतिशत</i>)	वास्तविक इंजेक्शन (बीडब्ल्यूपीडी)	वार्षिक योजना के संदर्भ में कमी (<i>प्रतिशत</i>)		
2014-15	929072	12.43	177986	6.5		
2015-16	950120	12.03	144945	4.67		
2016-17	990500	0.71	174216	27.18		
2017-18	922200	8.21	185315	24.45		
2018-19	860156	12.64	183508	35.82		

बीडब्ल्यूपीडी: प्रति दिन जल का बैरल

स्रोत: वार्षिक निर्मित योजनाएं और उप-सतह वार्षिक रिपोर्ट

कंपनी वार्षिक योजना में नियोजित इनपुट¹¹ की अनुपलब्धता एंव आगे लीकेज/ वॉटर इंजेक्शन लाइनों की विफलता, वर्कओवर ऑपरेशन में देरी तथा स्टीमुलेशन जॉब के कारण बाधा आधारित वार्षिक योजना में भी नियोजित मात्रा को इंजेक्ट नहीं कर सकी। इससे अधिक खालीपन तथा जलाशय के दबाव में कमी आई। वॉटर इंजेक्शन के असमान वितरण, दोनों पार्श्व एंव लंबवत, के कारण क्षेत्र के कुछ क्षेत्रों में दबाव सिंक का विकास हुआ। इससे कच्चे तेल का उत्पादन तथा रिकवरी प्रभावित हुई।

3.4 नियोजित निविष्टियों की अप्राप्ति

वार्षिक वॉटर इंजेक्शन योजना में नए इंजेक्टरों के माध्यम से इनपुट, उत्पादन कुओं का इंजेक्शन कुओं में रूपांतरण तथा इंजेक्शन कुओं का रखरखाव शामिल है। मुंबई हाई तथा नीलम एंव हीरा वॉटर इंजेक्शन वार्षिक निर्माण योजना के अधिकांश इनपुट उपलब्ध नहीं करा सके। मुंबई हाई के वर्ष 2014-15 से वर्ष 2018-19 के दौरान विभिन्न नियोजित निविष्टियों के वास्तविक कार्यान्वयन की तुलना में योजना का विवरण अनुलग्नक -III में दिया गया है।

इंजेक्टर वे कुएँ होते हैं जिनके माध्यम से जलाशय में जल डाला जाता है। वर्ष 2014-15 से वर्ष 2018-19 के दौरान इंजेक्टरों की नियोजित बनाम वास्तविक संख्या तालिका 3.4 में दी गई है।

वर्ष		योजना (सं.)					वास्तविक (औसत) (सं)						कमी (सं.)	
	एमएच	एमएच	एमएच	नीलम	हीरा	एन एंड	एमएच	एमएच	एमएच	नीलम	हीरा	एन एंड	एमएच	एन एंड
	एन	एस				एच	एन	एस				एच		एच
2014-15	119	188	307	11	61	72	97	152	249	11	52	63	58	9
2015-16	116	154	270	12	55	67	89	136	225	12	52	64	45	3
2016-17	99	146	245	19	58	77	89	131	220	14	53	67	25	10
2017-18	110	144	254	20	59	79	92	133	225	14	59	73	29	6
2018-19	117	167	284	22	64	86	99	131	230	20	60	80	54	6

तालिका 3.4: योजना बनाम वास्तविक इंजेक्टर

एमएचएन: मुंबई हाई नॉर्थ, एमएचएस: मुंबई हाई साउथ, एमएच: मुंबई हाई, एन एंड एच: नीलम और हीरा स्रोत: वास्तविक बनाम नियोजित इंजेक्टरों की संख्या के संबंध में प्रबंधन की प्रतिक्रिया।

10

¹ नए इंजेक्टर, उत्पादन कुओं को इंजेक्शन कुओं में बदलना और इंजेक्शन कुओं का रखरखाव।

मुंबई हाई तथा नीलम एंव हीरा में, उत्पादक कुओं को जल के इंजेक्शन कुओं ये में परिवर्तित करने के लिए रिग संसाधनों की अनुपलब्धता, नए इंजेक्टरों को ड्रिल करना, इंजेक्टर को उत्पादकों के रूप में उपयोग करना और लाइन लीकेज नियोजित इनपुट की गैर-प्राप्ति के मुख्य कारण थे। ड्रिलिंग रिग, स्टिमुलेशन पोत जैसे नियोजित संसाधनों को उत्पादन गतिविधियों के लिए मोड़ दिया गया था

प्रबंधन/मंत्रालय ने कहा (फरवरी/जून 2021) कि जैसे-जैसे स्टीमुलेशन पोत एंव रिग्स की उपलब्धता में सुधार हुआ है, इन कार्यों को किया जा रहा है तथा निरंतर आधार पर कमी को समाप्त किया जा रहा है। आगे यह भी बताया गया कि बंद वॉटर इंजेक्शन लाइनों को पाइपलाइन प्रतिस्थापन परियोजनाओं के माध्यम से संबोधित किया जाता है। प्रबंधन ने कहा कि वर्ष 2015-16 में हीरा वाटर इंजेक्शन प्लेटफॉर्म से मुख्यालय प्लेटफॉर्म (एक मानव रहित प्लेटफॉर्म) के बीच पाइपलाइन के सुधार तथा वर्ष 2017-18 में मानव रहित प्लेटफॉर्म एचआर और एचएसए के बीच पाइपलाइन ने हीरा में शून्य प्रतिस्थापन में अंतर को कम किया था।

उत्तर को इस तथ्य के दृष्टि से देखेने की आवश्यकता है कि वर्ष 2014-15 से वर्ष 2018-19 के दौरान, कंपनी वॉटर इंजेक्शन के लिए नियोजित अधिकांश इनपुट प्रदान नहीं कर सकी। वर्ष 2019-20 तथा वर्ष 2020-21 के दौरान भी वास्तविक वॉटर इंजेक्शन निर्माण योजना से कम था। तथ्य यह है कि शून्यकरण प्रतिस्थापन योजना बाधाओं पर विचार करती है, लेकिन फिर भी इसे प्राप्त नहीं किया जा सका है, यह चिंता का विषय है।

3.5 वॉटर इंजेक्शन मात्रा का मापन

कंपनी द्वारा बताई गई वॉटर इंजेक्शन की मात्रा को इंजेक्शन प्लेटफॉर्म के मुख्य इंजेक्शन पंप के अंतिम छोर में मापा जाता है। यह मात्रा विभिन्न वॉटर इंजेक्शन कुओं को आवंटित की जाती है। प्रोसेस प्लेटफॉर्म से उपचारित जल वेलहेड तक पहुंचता है एंव मीटरिंग उपकरणों के माध्यम से इंजेक्शन कुएं में जाता है, जो प्रत्येक कुएं पर इंजेक्शन दर का पता लगाने के लिए होते हैं। कंपनी ने जलाशय में डाले गए जल की मात्रा को मापने के लिए वेलहेड पर मीटर लगाए थे। नीलम एंव हीरा के मामले में, मानव रहित प्लेटफार्मों पर

¹² उत्पादन कुओं जो उत्पादन के किफायती स्तर का उत्पादन बंद कर देते हैं, नए कुओं की ड्रिलिंग पर अतिरिक्त खर्च को बचाने के लिए जल के इंजेक्शन कुओं में परिवर्तित कर दिए जाते हैं।

अपर्याप्त माप को आंतरिक रिपोर्टीं में टिप्पणी की गई थी तथा वर्ष 2013-18 के दौरान नए मीटर लगाए गए थे।

लेखापरीक्षा ने देखा कि मुंबई हाई में अधिकांश मीटर वर्ष 2007-08 से अक्रियाशील हो गए हैं एंव कंपनी समय पर गैर-कार्यात्मक मीटरों को बदलने में विफल रही। इसके अभाव में अक्टूबर 2019 तक छह माह में एक बार पोर्टेबल अल्ट्रासोनिक मीटर से इंजेक्शन की दर मापी जाती थी। वर्तमान में इसे दो माह में एक बार मापा जाता है। रीडिंग तात्कालिक हैं तथा दिन की दर के लिए एक्सट्रपलेशन किया गया है। इस प्रकार, वर्तमान में कोई निरंतर ऑनलाइन माप नहीं है। इसके अलावा, वर्ष 2014-15 से वर्ष 2018-19 के दौरान इंजेक्शन लाइनों में कई रिसावों के साथ, मुख्य इंजेक्शन पंप पर मापी गई तथा जलाशय में इंजेक्ट की गई इंजेक्शन मात्रा सही मात्रा नहीं है। यह परीक्षण दरों तथा वास्तविक इंजेक्शन मात्रा में अंतर से साबित होता है।

कंपनी द्वारा नियुक्त एक अंतरराष्ट्रीय सलाहकार मेसर्स जीसीए ने कुंओं की समस्याओं की पहचान करने के लिए नियमित रूप से तथा बार-बार अलग अलग कुओं पर मीटरिंग की अनुशंसा की। इन-हाउस टास्क फोर्स ने पाया कि दिनांक 1 सितंबर 2018 को, मुंबई हाई फील्ड के मुख्य इंजेक्शन पंप के अंतिम छोर में प्रति दिन 9.24 लाख बैरल जल (बीडब्ल्यूपीडी) की रिपोर्ट की गई मात्रा के मुकाबले, वेलहेड पर परीक्षण डेटा संकेतित इंजेक्शन मात्रा से 1.41 लाख बीडब्ल्यूपीडी कम थी। टास्क फोर्स ने वेलहेड पर फ्लो मीटर एंव प्रेशर ट्रांसमीटर लगाने तथा इंजेक्शन दर की ऑनलाइन निगरानी के लिए उन्हें सुपरवाइजरी कंट्रोल एंड डेटा एक्विजिशन (स्काडा) सिस्टम से जोड़ने की अनुशंसा की। प्रबंधन ने बताया कि टास्क फोर्स की अनुशंसा के अनुसार अब कुओं के परीक्षण की आवृत्ति दो महीने में एक बार की जाती है। लेखापरीक्षा ने देखा कि जून 2020 में भी, मुख्य इंजेक्शन पंप के अंतिम छोर और वेलहेड पर मापे गए वॉटर इंजेक्शन के बीच का अंतर प्रति दिन 1.29 लाख बैरल जल था। इस प्रकार, इंजेक्शन प्लेटफॉर्म के मुख्य इंजेक्शन पंप छोर पर मापी गई मात्रा जलाशय में इंजेक्ट किए गए जल की मात्रा की गणना के लिए एक सटीक आकलन नहीं है।

प्रबंधन/मंत्रालय ने आश्वासन दिया (फरवरी 2021/जून 2021) कि कंपनी वेलहेड प्लेटफार्मीं पर मीटरों की स्थापना में तेजी ला रही है एंव भविष्य में ऑनलाइन माप तथा प्रभावी निगरानी के लिए उन्हें स्काडा प्रणालि से जोड़ रही है और परियोजना के अगले तीन वर्षीं में पूरा होने की संभावना है।

उत्तर को इस तथ्य पर विचार करते हुए देखने की आवश्यकता है कि प्रारंभ में सभी वॉटर इंजेक्शन कुएं अलग-अलग मीटरों से सुसज्जित थे। लेकिन इसे बदलने के लिए समय पर कार्रवाई नहीं की गई। यह चिंता का विषय है कि जलाशय के लिए सिमुलेशन मॉडल में अविश्वसनीय मूल्यों का उपयोग जारी है।

अनुशंसा संख्या 2

बेहतर और समय पर निगरानी के लिए मानवरिहत प्लेटफॉर्म के अंतिम छोर में इंजेक्ट किए गए जल की मात्रा को मापा जाना है। स्काडा को ऑनलाइन मीटर के साथ जोड़ने पर सभी प्लेटफॉर्मों पर विचार किया जा सकता है।

3.6 शून्यता प्रतिस्थापन योजना और उपलब्धि

जैसा कि पैरा 3.1 में उल्लेख किया गया है, पूर्ण शून्यीकरण प्रतिस्थापन के विपरीत, कंपनी केवल आंशिक शून्यता क्षितिपूर्ति प्राप्त कर सकी। कंपनी ने मुंबई हाई और हीरा के क्षेत्रों में उत्पादन शुरू होने के छह से आठ साल बाद जल का इंजेक्शन शुरू किया और ऐतिहासिक रूप से जल का इंजेक्शन अपर्याप्त था। मुंबई हाई और नीलम और हीरा क्षेत्रों में नियोजित शून्यता प्रतिस्थापन अनुपात तालिका 3.5 में दिया गया है। तालिका से यह देखा जा सकता है कि दोनों क्षेत्रों में नियोजित शून्यता प्रतिस्थापन अनुपात सामान्यतः 100 प्रतिशत से कम रहा है।

तालिका 3.5: योजना बनाम वास्तविक श्नयता प्रतिस्थापन अनुपात (प्रतिशत में)

						•			<u> </u>	• •		
वर्ष	एल-III उत्तर#		एल-II उत्तर		एल-। नॉर्थ		एल-III साउथ		नीलम		हीरा	
	योजना	वास्तविक	योजना	वास्तविक	योजना	वास्तविक	योजना	वास्तविक	योजना	वास्तविक	योजना	वास्तविक
2014-15	104	88	96	93	30	38	60	57	34	29	71	87
2015-16	93	79	97	86	38	25	71	65	34	30	73	59
2016-17	86	78	72	74	33	63	68	71	48	34	89	69
2017-18	74	84	73	71	110	67	75	62	38	37	95	78
2018-19	83	85	65	76	79	49	70	61	46	41	88	86

स्रोतः योजना और वास्तविक शून्यता प्रतिस्थापन अनुपात और मुंबई हाई उप-सतह वार्षिक रिपोर्ट के संबंध में प्रबंधन की प्रतिक्रिया।

एल-1, 11, 111 का अर्थ है परत 1, 11, 111

इंजेक्शन विल्ड-अप योजनाओं को 100 प्रतिशत से कम के शून्य प्रतिस्थापन के साथ तैयार किया गया था (क्रमशः 2014-15 और 2017-18 के दौरान मुंबई हाई नॉर्थ में एल-III जलाशय एंव एल-I जलाशय को छोड़कर) इंजेक्शन मात्रा योजना शून्यता

प्रतिस्थापन योजना पर आधारित है। मार्च 2019 तक मुंबई हाई फील्ड में संचयी शून्यता क्षितिपूर्ति¹³ केवल 54.43 प्रतिशत था। इसी तरह, नीलम तथा हीरा के खेतों में, यह क्रमशः 42 और 78.8 प्रतिशत था। लेखापरीक्षा ने देखा कि कम संचयी शून्यता क्षितिपूर्ति जल के इंजेक्शन की आवश्यकता की अपर्याप्त योजना के साथ-साथ योजना के खिलाफ कम जल के इंजेक्शन के कारण था।

मुंबई हाई साउथ, मुंबई हाई नॉर्थ, नीलम तथा हीरा फील्ड के प्रमुख तेल उत्पादक एल-III परत के रिक्त स्थान, क्षतिपूर्ति और वास्तविक शून्यकरण प्रतिस्थापन को अनुलग्नक-IV में ग्राफिक रूप से प्रदान किया गया है।

जून 2009 में विश्वव्यापी पेट्रोलियम सलाहकार विलियम एम. कॉब एंड एसोसिएट्स द्वारा मुंबई हाई फील्ड के निष्पादन का मूल्यांकन किया गया। सलाहकार ने पाया कि वाटर इंजैक्शन की शुरूवात से सभी क्षेत्रों में संचयी शुन्य प्रतिस्शापन अनुपात आमतौर पर 0.502 (अर्थात <100 प्रतिशत) हैं, सिवाय मुंबई हाई साउथ के मध्य क्षेत्र को छोड़कर, जो अन्य क्षेत्रों की तुलना में बढ़ी हुई वॉटर इंजेक्शन मात्रा के कारण बेहतर प्रदर्शन कर रहा है। परिणामस्वरूप, क्षेत्रों के बड़े हिस्से में जलाशय के दबाव में गिरावट जारी रही, जिसके परिणामस्वरूप कुएं की उत्पादकता में गिरावट आई। सलाहकार ने, अधिक कुओं को जोड़कर या उत्पादकों को इंजेक्टर में परिवर्तित करके, वॉटर इंजेक्शन को बढ़ाने तथा प्रभावी संचयी शून्यता प्रतिस्थापन अनुपात को कम से कम 1.1 से 1.3 तक बढ़ाने की अनुशंसा की ताकि दबाव बढ़ाया जा सके। हालांकि, अनुशंसा तथा सर्वोत्तम जलाशय अभ्यास के विपरीत, मुंबई उच्च क्षेत्र में वॉटर इंजेक्शन योजना आम तौर पर 100 प्रतिशत शून्यता प्रतिस्थापन अनुपात से कम थी।

नीलम तथा हीरा क्षेत्र में, डोमेन विशेषज्ञ (मैसर्स गणेश ठाकुर) ने इंजेक्टिविटी¹⁴ में सुधार, जल की कमी को दूर करने के लिए परिधीय कुओं के इंजेक्शन, इंजेक्टरों की शिफ्टिंग/ प्रोफाइल संशोधन/ साइड ट्रैकिंग में सुधार करने का सुझाव दिया था।

लेखापरीक्षा संवीक्षा से पता चला कि अनुमोदित विकास योजना संख्या के विरूद्ध वार्षिक इंजेक्शन योजना में कम संख्या में जल के इंजेक्शन स्ट्रिंग को शामिल किया गया था। वॉटर इंजेक्शन लाईनों में लीकेज/ प्री-मैच्योर विफलता तथा वॉटर इंजेक्शन कुओं के अधूरे

¹³ संचयी शून्यता क्षतिपूर्ति का अर्थ है स्थापना के बाद से बनाई गई शून्यता पर क्षतिपूर्ति की गई शन्यता।

¹⁴ इंजेक्टिविटी इंजेक्टेड जल प्राप्त करने हेतु कुओं की योग्यता को मापता है। यह वर्षों से क्षरण, स्केल और जीवाणु वृद्धि के कारण खराब हुआ है।

वर्कओवर के कारण बड़ी संख्या में स्ट्रिंग जल के इंजेक्शन के लिए उपलब्ध नहीं थे। इन पर विस्तार से अध्याय 6 में चर्चा की गई है।

प्रबंधन ने कहा (अप्रैल 2020) कि स्वीकृत पुनर्विकास योजना के अनुसार वॉटर इंजेक्शन की आवश्यकता एक आदर्श मामला है। हालांकि, वास्तव में वार्षिक वॉटर इंजेक्शन योजना तैयार करते समय, पुराने बुनियादी ढांचे और अन्य वास्तविक समय की बाधाओं के कारण अधिकांश स्थितियां पुनर्विकास योजना के अनुसार नहीं हैं। इसने आगे कहा कि इन बाधाओं को दूर करने के प्रयास किए जा रहे हैं और जैसे-जैसे स्टीमुलेशन पोत और रिग की उपलब्धता में सुधार होगा, अधिक स्ट्रींग उपलब्ध होंगे। हीरा क्षेत्र के संबंध में, यह कहा गया था कि बाधाओं को दूर कर दिया गया है और प्राप्त वार्षिक योजना हाल के वर्षों में लाइन रिसाव को संबोधित करने के कारण पुनर्विकास योजना के 90 प्रतिशत से अधिक है तथा इसमें और सुधार होगा। मंत्रालय ने स्वीकार किया (जून 2021) कि वॉटर इंजेक्शन ऐतिहासिक रूप से अपर्याप्त था, हालांकि सभी विकास योजनाओं में वॉटर इंजेक्शन को महत्वपूर्ण इनपुट माना गया था और इससे अच्छी तरह से उत्पादकता प्रभावित हुई थी।

3.7 संक्षेप

कंपनी ने अपनी पुनर्विकास योजनाओं में 100 प्रतिशत शून्यता प्रतिस्थापन (निकाले गए तेल की मात्रा के बराबर जल डालने की योजना बनाई) पर विचार किया। हालांकि, पुनर्विकास योजनाओं की तुलना में जल का वास्तविक इंजेक्शन अपर्याप्त था। इसके अलावा, मुंबई हाई तथा नीलम हीरा क्षेत्रों द्वारा तैयार की गई वार्षिक योजना में पुनर्विकास योजनाओं के अनुसार मात्रा की तुलना में कम मात्रा में जल के इंजेक्शन की परिकल्पना की गई थी। साथ ही इंजेक्ट किए गए जल की वास्तविक मात्रा वार्षिक योजना में नियोजित मात्रा से और भी कम थी। बाधाओं, जैसे, रिग/स्टीमुलेशन पोत की अनुपलब्धता, अपर्याप्त वॉटर इंजेक्शन अवसंरचना तथा पाइपलाइन नेटवर्क, आदि को वार्षिक योजना तैयार करते समय एक मानदंड के रूप में माना गया था। निरंतर कम शून्यता मुआवजे के परिणामस्वरूप जलाशय के दबाव में गिरावट आई और अंततः कच्चे तेल का उत्पादन तथा रिकवरी प्रभावित हुई।

अस्वास्थ्यकर वॉटर इंजेक्शन बुनियादी ढांचे, खराब जल की गुणवत्ता तथा पाइपलाइनों/ इंजेक्टरों के अपर्याप्त रखरखाव के मुद्दों, जिसने कंपनी को कम मात्रा में जल की योजना बनाने/ इंजेक्शन करने के लिए बाध्य किया, पर अध्याय 4 से 6 में विस्तार से चर्चा की गई है।

मुख्य इंजेक्शन पंप

अध्याय 4 <u>वॉटर इंजेक्शन</u> उपकरण

4.1 वॉटर इंजेक्शन सतह सुविधाएं

वॉटर इंजेक्शन प्रोसेस प्लेटफॉर्म जलाशय में इंजेक्शन हेतु उपयुक्त बनाने के लिए समुद्री जल को संसाधित करता है। कई इंजेक्टर कुओं के माध्यम से जलाशय में इंजेक्शन हेतु साफ और उपचारित समुद्री जल को उच्च दबाव पर पंप किया जाता है। वर्ष 1984 से 1994 के दौरान वॉटर इंजेक्शन प्लेटफॉर्म (मुंबई हाई¹⁵ में चार तथा नीलम¹⁶ और हीरा¹⁷ में एक-एक) चालू किए गए थे। मुंबई हाई फील्ड के मुंबई नॉर्थ वाटर इंजेक्शन (एमएनडब्ल्यू) प्लेटफॉर्म को वर्ष 2006 के दौरान शुरु किया गया था। मुंबई में वाटर इंजेक्शन प्लेटफॉर्म की स्थापित क्षमता उच्च पुनर्विकास योजनाओं की इंजेक्शन आवश्यकताओं को पूरा करने के लिए पर्याप्त थे। तथापि, उपकरणों के प्रतिस्थापन/ओवरहॉलिंग में विलम्ब ने उनकी विश्वसनीयता/ दक्षता को प्रभावित किया जैसा कि आगामी पैराग्राफों में चर्चा की गई है।

4.2 वॉटर इंजेक्शन उपकरण का कार्य

वॉटर इंजेक्शन उपकरण के कार्य तालिका 4.1 में दिए गए हैं।

तालिका 4.1: वॉटर इंजेक्शन उपकरण के कार्य

उपकरण	कार्य
क्लोरीनेटर	समुद्री जल में समुद्री जीव प्रचुर मात्रा में होता है और वे पाइपिंग और उपकरणों में शैवाल, बार्नाकल या सूक्ष्म जीवों की कॉलोनियां बना सकते हैं। समुद्री जल लिफ्ट पंप के इनलेट पर स्थापित क्लोरीनेटर इकाई, समुद्री जल के इलेक्ट्रोलिसिस द्वारा हाइपोक्लोराइट उत्पन्न करती है। क्लोरीनेटरों द्वारा उत्पादित क्लोरीन को सूक्ष्म जीवों को मारने के लिए जल में सोडियम हाइपोक्लोराइट के रूप में इंजेक्ट किया जाता है।

¹⁵ साउथ हाई वाटर इंजेक्शन (1994), वाटर इंजेक्शन साउथ (1987), इन्फिल कॉम्प्लेक्स वाटर इंजेक्शन (1988), वाटर इंजेक्शन नॉर्थ (1984)।

¹⁶ वॉटर इंजेक्शन नीलम (1994)।

¹⁷ वॉटर इंजेक्शन हीरा (1989)।

2021 की प्रतिवेदन संख्या 19

उपकरण	कार्य			
समुद्री जल लिफ्ट पंप	समुद्री जल लिफ्ट पंप द्वारा समुद्री जल को समुद्र तल से लगभग 25 से 30 मीटर नीचे से उठाया जाता है और कोर्स/फाइन फिल्टर में पंप किया जाता है।			
फाइन फ़िल्टर	फाइन फिल्टर को समुद्री जल से 2 माइक्रोन से अधिक या उसके बराबर आकार के सभी निलंबित ठोस पदार्थों को हटाने के लिए डिज़ाइन किया गया है।			
डी-ऑक्सीजन टॉवर सिस्टम	समुद्री जल में ऑक्सीजन की उपस्थिति पाइपलाइनों, उपकरणों आदि के क्षरण का मुख्य कारण है। डी-ऑक्सीजनेशन टॉवर सिस्टम को समुद्री जल की ऑक्सीजन सामग्री को कम करने के लिए निरंतर आधार पर फ़िल्टर्ड समुद्री जल को उपचारित करने के लिए डिज़ाइन किया गया है, जो घुलित ऑक्सीजन का 0.02 मिलीग्राम / लीटर से अधिक नहीं है।			
वैक्यूम पंप	वैक्यूम पंप को फ़ीड जल में घुलित ऑक्सीजन स्तर को 7 पीपीएम से 0.02 पीपीएम तक कम करने के लिए डिज़ाइन किया गया है।			
ब्स्टर पंप	बूस्टर पंप को मुख्य इंजेक्शन पंप के लिए पंप के खिचांव पर 14.6 किग्रा / सेमी ² के निर्वहन दबाव के लिए आवश्यक शुद्ध दबाव प्रदान करने के लिए डिज़ाइन किया गया है।			
मुख्य इंजेक्शन पंप	मुख्य इंजेक्शन पंप हाई-स्पीड सेंट्रीफ्यूगल पंप है, जो विभिन्न इंजेक्शन कुओं में उपचारित जल के इंजेक्शन के लिए आवश्यक दबाव प्रदान करता है।			
खुराक पंप	क्षमता नियंत्रण के लिए मैनुअल स्ट्रोक समायोजन के साथ रासायनिक इंजेक्शन पंप को इंजेक्शन जल में आवश्यक खुराक पर रसायनों (विभिन्न उद्देश्यों के लिए) को इंजेक्ट करने के लिए डिज़ाइन किया गया है।			
	स्रोत: 'मुंबई हाई के वॉटर इंजेक्शन परिसरों में कोर्स(मोटे) फिल्टर की आवश्यकता पर अध्ययन' पर प्रबंधन प्रतिक्रिया और आईओजीपीटी रिपोर्ट।			

मुंबई हाई तथा नीलम और हीरा फील्ड में वॉटर इंजेक्शन प्लेटफॉर्म पर स्थापित (चलने

और स्टैंडबाय) प्रमुख उपकरणों का विवरण **अनुलग्नक V** में उल्लिखित है।

4.3 महत्वपूर्ण और आवश्यक उपकरण

कंपनी ने अपतटीय सुविधाओं में स्थापित उपकरणों को मोटे तौर पर दो श्रेणियों में वर्गीकृत किया, जैसे महत्वपूर्ण उपकरण (जो सीधे तेल और गैस उत्पादन में योगदान करते हैं और बिना रुकावट के संचालन के लिए होते हैं) और आवश्यक उपकरण (जो सीधे तेल और गैस उत्पादन में योगदान नहीं करते हैं लेकिन परिचालन की सहायता के लिए आवश्यक)। तदनुसार, कंपनी ने समुद्री जल उठाने वाले पंपों, बूस्टर पंपों और मुख्य इंजेक्शन पंपों को 'क्रिटिकल' और क्लोरीनेटर्स, फाइन फिल्टर्स, डी-ऑक्सीजनेशन टॉवर और वैक्यूम पंपों को 'आवश्यक' उपकरण के रूप में वर्गीकृत किया।

लेखापरीक्षा ने देखा कि रासायनिक खुराक पंपों को आवश्यक उपकरण के रूप में नहीं माना गया था। यदि प्लेटफॉर्म पर जल की वांछित गुणवत्ता को बनाए नहीं रखा जाता है, तो यह जल के इंजेक्शन उपकरण को खराब कर सकता है, वेलबोर को बंद कर सकता है और अप्रत्यक्ष रूप से कच्चे तेल के उत्पादन को प्रभावित कर सकता है। कंपनी द्वारा अपनाई गई आवश्यक उपकरण की परिभाषा के अनुसार, लेखापरीक्षा का विचार है कि सभी रासायनिक इंजेक्शन पंपों को भी आवश्यक माना जाना चाहिए।

प्रबंधन/मंत्रालय ने कहा (फरवरी/जून 2021) कि जैसा कि लेखापरीक्षा द्वारा सुझाया गया है, रासायनिक खुराक पंपों को आवश्यक उपकरणों के अंतर्गत शामिल करने पर विचार किया जाएगा।

4.4 उपकरण प्रतिस्थापन/सुधार नीति

वर्ष 2006¹⁸ की सीएजी रिपोर्ट संख्या 8 की अगली कड़ी के रूप में, कंपनी ने अपतटीय सुविधाओं के सभी प्रमुख उपकरणों के लिए उपकरण प्रतिस्थापन नीति तैयार की (2007)। प्रतिस्थापन नीति के अनुसार कंपनी द्वारा तैयार किए गए वॉटर इंजेक्शन उपकरण की डिजाइन सेवा अविध अनुलग्नक VI में दी गई है।

इस संबंध में, लेखापरीक्षा ने देखा कि हालांकि, इस नीति का पालन नहीं किया गया है। जैसा कि आंतरिक दस्तावेजों में दर्ज किया गया है, उपकरण की विफलता, खराब रखरखाव कार्य, ओवरहालिंग में देरी, प्रतिस्थापन/स्धार आदि के लिए जिम्मेदार है।

प्रबंधन/मंत्रालय ने कहा (फरवरी/जून 2021) कि उपकरण पैकेज प्रतिस्थापन/सुधार उपकरण की परिचालन स्थिति और आयु पर निर्भर करता है। उपकरण के प्रतिस्थापन/प्रतिधारण से संबंधित सभी निर्णय मौजूदा प्रतिस्थापन/प्रतिधारण नीति के अनुसार लिए जा रहे हैं।

लेखापरीक्षा का विचार है कि प्रबंधन ने समय पर दृष्टिकोण अपनाने के बजाय, प्रबंधन ने अपने डिजाइन परिचालन जीवन की समाप्ति के बाद प्लेटफॉर्म के सुधार/उपकरणों के प्रतिस्थापन के लिए एक प्रतिक्रियाशील दृष्टिकोण अपनाया और प्रणाली अविश्वसनीय हो गई।। इससे जल के इंजेक्शन की मात्रा और गुणवत्ता प्रभावित हुई।

¹⁸ ओएनजीसी में अपतटीय संस्थापन के महत्वपूर्ण उपकरणों की उपलब्धता और उपयोग

4.5 प्रणाली और उपकरण उपलब्धता

'उपकरण उपलब्धता' शब्द को कंपनी द्वारा आंतिरक रूप से 'पिरचालन उद्देश्यों के लिए विशेष उपकरणों की उपलब्धता' के रूप में पिरभाषित किया गया है। पिरचालन में उपकरणों के रखरखाव और मरम्मत की अविध के दौरान स्टैंडबाय उपकरण द्वारा उपकरण की उपलब्धता का ध्यान रखा गया था। इसी तरह, किसी भी महत्वपूर्ण उपकरण की 'प्रणाली उपलब्धता' को 'उत्पादन के निर्बाध प्रवाह के लिए उपकरणों की उपलब्धता (पिरचालन और स्टैंडबाय दोनों)' के रूप में दर्शाया गया है। पिरचालन लक्ष्य निर्धारित करते समय, 100 प्रतिशत की 'प्रणाली उपलब्धता' को इस हद तक आश्वासन दिया गया था कि उपकरण डाउन टाइम उपकरण स्टैंडबाय टाइम से कम था। इसको ध्यान में रखते हुए, ओएनजीसी ने प्रणाली उपलब्धता के लिए 100 प्रतिशत और उपकरण उपलब्धता के लिए 95 प्रतिशत का लक्ष्य निर्धारित किया है। वर्ष 2014-15 से 2018-19 के दौरान मुंबई हाई तथा नीलम और हीरा क्षेत्रों में विभिन्न वॉटर इंजेक्शन प्लेटफार्मों पर स्थापित वॉटर इंजेक्शन उपकरण की प्रणाली उपलब्धता अनुनग्नक-VII में दी गई है।

मुंबई हाई तथा नीलम और हीरा क्षेत्रों में, प्लेटफार्मों पर महत्वपूर्ण उपकरणों की 'प्रणाली उपलब्धता', जैसे इंफिल कॉम्प्लेक्स वॉटर इंजेक्शन, साउथ हाई वॉटर इंजेक्शन, वॉटर इंजेक्शन साउथ और नीलम वॉटर इंजेक्शन 100 प्रतिशत के लक्ष्य से कम था। इसी प्रकार इंनिफल कॉम्प्लेक्स वाटर इंजेक्शन, वाटर इंजेक्शन साउथ, नीलम वाटर इंजेक्शन और वाटर इंजेक्शन हीरा प्लेटफॉर्म पर आवश्यक उपकरणों की 'प्रणाली उपलब्धता' 100 प्रतिशत के लक्ष्य से कम थी। लेखापरीक्षा ने देखा कि यद्यपि कुछ उपकरणों की सिस्टम उपलब्धता को 100 प्रतिशत के रूप में दर्शाया गया था,उपकरण का निष्पादन पुराने होने के कारण कम था जो प्रतिस्थापन/स्धार में देरी के साथ युग्मत था।

प्रबंधन/मंत्रालय ने कहा (फरवरी/जून 2021) कि जल के इंजेक्शन की गुणवत्ता और मात्रा में सुधार के लिए समय-समय पर कई पहल किया गए हैं। यह परिपक्व क्षेत्र के वातावरण तथा परिधीय और नियंत्रण सहित स्थापित उपकरणों/ प्रणालियों/ उप-प्रणालियों के पुराने होने पर विचार करते हुए एक नियमित रूप से चल रही प्रक्रिया है।

लेखापरीक्षा का विचार है कि कंपनी ने अपने डिजाइन के परिचालन जीवन की समाप्ति के बाद और सिस्टम के अविश्वसनीय होने के बाद, समय पर प्लेटफॉर्म के सुधार/उपकरणों के प्रतिस्थापन के बजाय एक प्रतिक्रियाशील दृष्टिकोण अपनाया। इससे जल के इंजेक्शन की गुणवत्ता और मात्रा प्रभावित हुई।

4.6 उपकरण उपलब्धता/प्रणाली डेटा की विश्वसनीयता

मुंबई हाई में उपकरणों की मासिक प्रगति रिपोर्ट (एमपीआर) और दैनिक प्रगति रिपोर्ट (डीपीआर) की समीक्षा से लेखापरीक्षा ने पाया कि बड़ी संख्या में मामलों में, उपकरण चलाने/स्टैंडबाय/रखरखाव घंटे एक-दूसरे से मेल नहीं खा रहे थे और उस हद तक उपकरण उपलब्धता डेटा विश्वसनीय नहीं था। लेखापरीक्षा ने नीलम एमपीआर में उदाहरणों को चिन्हांकित किया, जहां उपकरण चलने के घंटों के साथ उपलब्ध के रूप में दिखाया जाना जारी था, यहां तक कि जब इसे मरम्मत के लिए भेजा गया था और जहां जल इंजेक्शन का औसत प्रेषण तब भी दर्शाया गया था जब सभी इंजेक्शन पंपों के लिए चलने का समय शून्य था (अन्लग्नक-VIII)।

प्रबंधन ने कहा (जून 2020) कि अधिकांश रिपोर्टों को विभिन्न अनुभागों और विभागों द्वारा मैन्युअल रूप से नियंत्रित किया जाता है तथा स्वीकार किया कि मैनुअल डेटा प्रविष्टि में कुछ त्रुटि हुई थी और अपतटीय टीमों को सलाह दी गई है कि वे किसी भी विसंगतियों को दूर करने के लिए सभी डेटा को एसएपी प्रणाली में फीड करें।

अनुशंसा संख्या 3

कंपनी को एसएपी प्रणाली के माध्यम से उपकरण उपलब्धता डेटा का रखरखाव सुनिश्चित करना चाहिए और एसएपी से सीधे रिपोर्ट तैयार करना सुनिश्चित करना चाहिए।

4.7 उपकरणों की 'प्रणाली उपलब्धता' की गणना करने की पद्धति'

उपकरण की प्रणाली उपलब्धता परिसंपत्ति के निष्पादन को मापने के लिए प्रमुख संकेतकों में से एक है। तथापि, लेखापरीक्षा ने ऐसे उदाहरण देखे जहां प्रणाली के 'उपलब्ध' होने के बावजूद, यह निष्पादन मानदंडों को पूरा नहीं कर सका जैसा कि नीचे बताया गया है:

• वाटर इंजेक्शन साउथ प्लेटफॉर्म में, वर्ष 2018-19 के दौरान 247,115 बीडब्ल्यूपीडी के नियोजित इंजेक्शन के मुकाबले, वास्तविक वॉटर इंजेक्शन केवल 177,549 बीडब्ल्यूपीडी (28 प्रतिशत की कमी) था। हालांकि, मुख्य इंजेक्शन पंपों की प्रणाली उपलब्धता 100 प्रतिशत बताई गई थी, भले ही दिसंबर 2017 से जुलाई 2018 के दौरान 1.20 लाख बीडब्ल्यूपीडी क्षमता वाला केवल एक इंजेक्शन पंप चालू था।

2021 की प्रतिवेदन संख्या 19

- वर्ष 2016-17 और 2017-18 के दौरान साउथ हाई वाटर इंजेक्शन प्लेटफॉर्म में फाइन फिल्टर्स की 'प्रणाली उपलब्धता' 100 प्रतिशत दर्ज की गई। हालांकि, फाइन फिल्टर के परिचालन में अक्षमता के कारण कणों की संख्या <2000 प्रति एमएल की परिचालन सीमा से अधिक हो गई।
- वर्ष 2014-15 से 2018-19 के दौरान नीलम में वैक्यूम पंपों की 'प्रणाली उपलब्धता' 99 प्रतिशत बताई गई थी। 60 महीनों में से, 22 महीनों में औसत घुलित ऑक्सीजन स्तर 20 पार्ट्स प्रति बिलियन (पीपीबी) के निर्धारित स्तर से अधिक था। इनमें से 19 महीनों में उच्च घुलित ऑक्सीजन का स्तर वैक्यूम पंप की अनुपलब्धता से मेल खाता है। इसी तरह, हीरा के मामले में, 25 महीनों में से जहां घुलित ऑक्सीजन का स्तर 20 पीपीबी के निर्धारित स्तर से अधिक था, 23 महीने वैक्यूम पंपों की अनुपलब्धता से मेल खाते थे। हालाँकि, सभी महीनों में वैक्यूम पंपों की उपलब्धता को 100 प्रतिशत के रूप में दर्शाया गया था।

प्रबंधन ने कहा (फरवरी 2021) कि मुख्य इंजेक्शन पंपों की 100 प्रतिशत प्रणाली उपलब्धता के साथ, यह स्पष्ट है कि उपलब्ध इंजेक्शन पंप वास्तविक क्षेत्र की आवश्यकता को पूरा करने के लिए पर्याप्त थे और इंजेक्शन पंप को अन्य क्षेत्र की स्थितियों के कारण बंद कर दिया गया था।

उत्तर तथ्यों से बाहर नहीं है क्योंकि दूसरा पंप दिसंबर 2017 से जुलाई 2018 की अविध के दौरान आंशिक रूप से उपलब्ध था और इसकी बहाली के बाद, इंजेक्शन को पहले की तरह नियोजित स्तर पर बहाल कर दिया गया था। लेखापरीक्षा का विचार है कि परिचालन आवश्यकता को पूरा किए बिना 'प्रणाली उपलब्धता' लक्ष्य की उपलब्धि कम उपयोगिता की है।

अन्शंसा संख्या 4

कंपनी को उपकरण की 'प्रणाली उपलब्धता' की गणना करते समय परिचालन आवश्यकता को पूरा करने के लिए उपकरणों की दक्षता/निष्पादन पर विचार करने की आवश्यकता है और प्रबंधन को निर्बाध परिचालन के लिए उपकरणों की विश्वसनीयता और उपलब्धता सुनिश्चित करनी चाहिए।

4.8 निगरानी तंत्र - एसएपी प्रणाली में प्लांट मेंटेनेंस मॉड्यूल (संयंत्र रखरखाव मॉड्यूल)

कंपनी ने वर्ष 2003 में प्लांट मेंटेनेंस मॉड्यूल सिंहत एसएपी ईआरपी प्रणाली लागू किया। प्लांट मेंटेनेंस मॉड्यूल को उपकरण के नियोजित और अनियोजित रखरखाव, उपकरण के महत्वपूर्ण भागों की मैपिंग और उनके ओवरहाल/ मरम्मत इतिहास की आवश्यकता को पूरा करने के लिए डिज़ाइन किया गया है। रखरखाव डेटा का प्रसंस्करण निष्पादन विश्लेषण में सहायता कर सकता है, परिचालन प्रभावशीलता में सुधार कर सकता है और प्रबंधन निर्णयों को सक्षम करने के लिए उपयोगी अंतर्दृष्टि प्रदान कर सकता है।

इस संबंध में, लेखापरीक्षा ने देखा कि इच्छित लाभ प्राप्त करने के लिए प्लांट मेंटेनेंस मॉड्यूल का व्यापक रूप से उपयोग नहीं किया गया था। इसका उपयोग केवल रखरखाव के तहत रोटरी उपकरण (पंप, मोटर) के लिए किया जाता था। स्थिर उपकरणों की मैपिंग नहीं की गई थी तथा रखरखाव गतिविधियों और उनके विवरण को मॉड्यूल में फीड नहीं किया गया था। डेटा फीड नहीं किए जाने या मैपिंग के अभाव में प्लांट मेंटेनेंस मॉड्यूल से उपकरण लॉग/ मरम्मत का इतिहास/ उपकरणों का निर्माण-वार निष्पादन प्राप्त नहीं किया जा सका।

लेखापरीक्षा ने आगे देखा कि बड़ी संख्या में मामलों में, दिन-वार उपकरण उपलब्धता डेटा मासिक उपकरण उपलब्धता डेटा से मेल नहीं खाता है। एसएपी सिस्टम के बाहर उपकरण इतिहास, ट्रिपिंग विवरण और मासिक निष्पादन रिपोर्ट को भी बनाए रखा गया था। प्लांट मेंटेनेंस मॉड्यूल का चयन करके और मैनुअल रिपोर्ट पर भरोसा करके, परिकल्पना के अनुसार निगरानी और नियंत्रण तंत्र को मजबूत नहीं किया जाता है। इस प्रकार प्लांट मेंटेनेंस मॉड्यूल और निगरानी तंत्र की प्रभावशीलता कम हो जाती है।

प्रबंधन/मंत्रालय (फरवरी 2021/जून 2021) ने आश्वासन दिया कि प्लांट मेंटेनेंस मॉड्यूल की सभी कार्यात्मकताओं का इच्छित लाभ प्राप्त करने के लिए व्यापक रूप से उपयोग किया जाएगा।

अनुशंसा संख्या 5

प्रबंधन एसएपी प्रणाली में संयंत्र रखरखाव मॉड्यूल के तहत कार्यात्मकताओं का व्यापक रूप से उपयोग कर सकता है ताकि निष्पादन विश्लेषण में सहायता, परिचालन प्रभावशीलता में सुधार और प्रबंधन निर्णयों के लिए उपयोगी अंतर्हिष्ट प्रदान करने के अपने इच्छित लाभ प्राप्त हो सकें।

¹⁹ वॉटर इंजेक्शन प्रणाली में अचल पूर्जी वाले उपकरण जैसे फाइन फिल्टर, डीओ टॉवर

4.9 उपकरणों के प्रतिस्थापन/सुधार में विलम्ब

4.9.1 आठ वर्षों से अधिक के लिए गैर-कार्यात्मक क्लोरीनेटर

इंजेक्शन जल की वांछित गुणवत्ता प्राप्त करने के लिए समुद्री जल का क्लोरीनीकरण पहला कदम है। सूक्ष्म जीव और जीवाणु दोनों के विकास को नियंत्रित करने के लिए समुद्री जल लिफ्ट पंप के इंटेक पर मूल रूप के समुद्री जल को क्लोरीनयुक्त किया जाता है। समुद्री जल में मौजूद जीवाणु, जो फिल्टर को बंद कर देते हैं, फॉर्मेशन को भी रोक सकते हैं। जीवाणु, विशेष रूप से सल्फेट को कम करने वाले जीवाणु, जो माइक्रोबियल(शुक्ष्मजीव) प्रेरित क्षरण का कारण बनते हैं, बेहद आक्रामक हैं और अपने सबसे खराब रूप में छोटी अविध के भीतर पाइपिंग विफलता का कारण बनेंगे। एक बार हो जाने के बाद, माइक्रोबियल प्रेरित क्षरण को समाप्त करना मुश्किल होता है और आने वाले वर्षों के लिए पुरानी रखरखाव और परिचालन समस्या में बढ़ सकता है। क्लोरीन की अनुपस्थिति में, कणों की 90 प्रतिशत हटाने की क्षमता> 2 माइक्रोन भी हासिल करना मृश्किल है।

क्लोरीनेटर का डिजाइन जीवन 15 वर्ष है। लेखापरीक्षा ने देखा कि प्लेटफार्मों के साथ स्थापित क्लोरिनेटर वर्ष 2002 से 2008 तक (मुंबई नॉर्थ वाटर इंजेक्शन प्लेटफॉर्म को छोइकर जो 2006 में चालू किया गया था) अपने डिजाइन जीवन से अधिक समय तक बने रहे। वर्ष 2012 में वाटर इंजेक्शन नॉर्थ प्लेटफॉर्म में क्लोरीनेटरों को बदल दिया गया था। क्लोरिनेटर ने वाटर इंजेक्शन साउथ प्लेटफॉर्म (2009, 2012), इन्फिल कॉम्प्लेक्स वाटर इंजेक्शन प्लेटफॉर्म (2010, 2017), साउथ हाई वाटर इंजेक्शन प्लेटफॉर्म (2010), नीलम वाटर इंजेक्शन (2010) और हीरा वाटर इंजेक्शन (2010) प्लेटफॉर्म में कार्य करना बंद कर दिया। कार्यशील क्लोरीनेटरों की अनुपस्थिति में वॉटर इंजेक्शन प्रणाली के विभिन्न चरणों में सामान्य एरोबिक जीवाणु और सल्फेट कम करने वाले जीवाणु की उपस्थिति देखी गई।

कंपनी के अनुसंधान एवं विकास संस्थान इंस्टिट्यूट ऑफ इंजीनियरिंग एंड ओसियन टेक्नोलॉजी (आईईओटी), जिसने नीलम और हीरा में जल इंजेक्शन पाइपलाइनों के विफलता विश्लेषण पर अध्ययन किया (अक्टूबर 2012), ने उल्लेख किया कि नीलम वाटर इंजेक्शन प्लेटफॉर्म में क्लोरीनेटर इकाइयां पिछले कुछ वर्षों से उपयोग में नहीं थीं और प्राथमिक बायोसाइड यानी समुद्री जल के इलेक्ट्रोलिसिस के माध्यम से उत्पन्न क्लोरीन के उपयोग के कार्य की अन्शंसा की। मुंबई हाई तथा नीलम और हीरा क्षेत्रों के लिए

पाइपलाइनों की समयपूर्व विफलता का अध्ययन करने वाली आंतिरक समिति ने यह भी देखा (अगस्त 2014) कि मुख्य इंजेक्शन पंप डिस्चार्ज पर सामान्य एरोबिक जीवाणु और सल्फेट कम करने वाले जीवाणु की उपस्थिति, सभी प्लेटफार्मों पर क्लोरीनेटरों की गैर - कार्यशीलता कमोबेश संख्या होने के कारण थी। समिति ने अनुशंसा की कि समुद्री जल उठाने वाले पंप इनलेट पर क्लोरीनेटर का उचित परिचालन और क्लोरीन का नियमित इंजेक्शन सुनिश्चित किया जाना चाहिए या वैकल्पिक क्लोरीनीकरण प्रणाली पर विचार किया जाना चाहिए।

लेखापरीक्षा ने क्लोरिनेटरों के लिए निविदा/पुनः निविदा को अंतिम रूप देने में अत्यधिक विलम्ब पाया। क्लोरीनेटरों की अनुपस्थिति में, बड़ी संख्या में, सामान्य एरोबिक जीवाणु और सल्फेट कम करने वाले जीवाणु फाइन फिल्टर पर ही देखे गए थे। इसके परिणामस्वरूप फाइन फिल्टर लगातार खराब होते गए और इंजेक्शन जल की गुणवत्ता प्रभावित हुई। इंजेक्शन के जल की खराब गुणवत्ता के कारण जल की इंजेक्शन पाइपलाइनों में भी गिरावट आई और उनकी समयपूर्व विफलता में योगदान दिया।

प्रबंधन ने कहा (फरवरी 2021) कि क्लोरीनेटरों को चरणों में बदला जा रहा है; नीलम (मार्च 2019) और हीरा (मई 2019) में नई इकाइयां चालू की गईं, जिन्हें साउथ हाई-वाटर इंजेक्शन और इंफिल कॉम्प्लेक्स वॉटर इंजेक्शन से बदला जा रहा है और सितंबर 2021 तक वाटर इंजेक्शन साउथ में अन्य स्विधाओं के साथ नए क्लोरीनेटर लगाए जाएंगे।

उत्तर को इस तथ्य के अनुसार देखा जा सकता है कि वॉटर इंजेक्शन प्लेटफार्मों में क्लोरीनेटर 8-10 वर्षों से अधिक समय से कार्य नहीं कर रहे थे, जिससे जल के इंजेक्शन की गुणवत्ता प्रभावित हुई है। कंपनी ने क्लोरीनेटर के प्रतिस्थापन के लिए 15 वर्ष का परिचालन जीवन निर्धारित किया है और इसके प्रतिस्थापन के लिए समय पर कार्रवाई की जानी चाहिए थी।

4.9.2 अन्य उपकरणों के सुधार में विलम्ब

वर्ष 2007 की उपकरण प्रतिस्थापन नीति के अनुसार कंपनी ने आंतरिक रूप से महत्वपूर्ण/प्रमुख उपकरणों के अनुमानित उपयोगी जीवन के रूप में 15-20 वर्षों का आकलन किया था।

इस संबंध में, लेखापरीक्षा ने देखा कि नीति का पालन नहीं किया गया था और प्लेटफार्मी पर उपकरण समुद्री वातावरण में लंबे समय तक उपयोग और पुराने होने के कारण वांछित

2021 की प्रतिवेदन संख्या 19

स्तर पर काम नहीं कर रहे थे। अपतटीय प्लेटफॉर्म पर किसी भी सुविधा की स्थापना के लिए आवश्यक समयाविध को ध्यान में रखते हुए, प्रस्तावों को बहुत पहले शुरू किया जाना चाहिए। सुधार की प्रक्रिया में देरी से शुरू होना देखा गया था जो अनुचित योजना और जल के इंजेक्शन के कारण महत्व की कमी को दर्शाता है। प्रतिस्थापन/ ओवरहालिंग में विलम्ब हुआ था और कुछ मामलों में, ओईएम की अनुशंसित अनुरक्षण पद्धतियों का पालन नहीं किया गया था। इस बीच, प्रमुख प्रणालियों और मुख्य उपकरणों की स्थिति खराब हो गई और इसका पूर्ण पैमाने पर परिचालन जारी रखना असुरिक्षित था। सुरक्षा बाधाओं के साथ मौजूदा प्लेटफार्मों पर परिचालन के कम पैमाने के साथ, लंबी अविध की योजनाओं को पूरा करने के लिए जलाशय स्वास्थ्य रखरखाव के लिए परिकल्पित वांछित इंजेक्शन मात्रा/गुणवत्ता प्राप्त नहीं की जा सकी जैसा कि तालिका 4.2 में दर्शाया गया है।

तालिका 4.2: वॉटर इंजेक्शन प्लेटफार्मों में उपकरणों के सुधार में देरी और इसके प्रभाव

प्लेटफॉर्म	स्थापित और 20 वर्ष पूरे किए	प्रस्ताव शुरू (वर्ष) और अनुमोदन (वर्ष)	निर्धारित /संशोधित पूर्णता	प्लेटफार्मों में जल के इंजेक्शन उपकरण की विफलता	मात्रा/गुणवत्ता पर परिणामी प्रभाव
साउथ हाई वाटर इंजेक्शन	1994 और 2014	2009 और 2016	2019/2020	वैक्यूम पंपों का बार-बार टूटना और वैक्यूम पंपों की अनुपलब्धता	जल की गुणवत्ता के मानदंड अनुमेय सीमा से अधिक थे, जिससे पानी की गुणवत्ता प्रभावित ह्ई। पंप की गई मात्रा 2.37 लाख bwpd (2014- 15) से घटकर 1.66 लाख bwpd (2018-19) हो गई।
वाटर इंजेक्शन साउथ	1987 और 2007	2012 और 2019 (डी- ऑक्सीजनेशन टॉवर को नया रूप दिया गया)	2021	4 फाइन फिल्टर काम नहीं कर रहे थे। संपूर्ण लेखापरीक्षा अविध के दौरान 4 वैक्यूम पंपों में से 3 डाउनटाइम में थे। 2 डी-ऑक्सीजनेशन टावरों में से केवल 1 का उपयोग किया गया था जबिक अन्य (जिनके आंतरिक भाग क्षतिग्रस्त थे) को लगातार स्टैंडबाय में रखा गया था।	अनुमेय सीमा से अधिक हो गए, जिससे जल की गुणवत्ता प्रभावित हुई। इंजेक्शन की मात्रा 1.91 लाख bwpd (2014-15) से घटकर 1.77 लाख bwpd (2018-19) हो गई।

प्लेटफॉर्म	स्थापित और 20 वर्ष पूरे किए	प्रस्ताव शुरू (वर्ष) और अनुमोदन (वर्ष)	निर्धारित /संशोधित पूर्णता	प्लेटफार्मों में जल के इंजेक्शन उपकरण की विफलता	मात्रा/गुणवत्ता पर परिणामी प्रभाव
				वर्ष 2018-19 के दौरान बूस्टर पंप की प्रणाली उपलब्धता 50 प्रतिशत से कम थी। एक बूस्टर पंप मई 2015 से डाउनटाइम में था (केवल मई 2021 तक 2 बूस्टर पंप स्थापित किए जाने की उम्मीद है)। स्थापित 5 मुख्य इंजेक्शन पंपों के प्रति, 3 मुख्य इंजेक्शन पंप विस्तारित अविध (2 वर्ष से अधिक) से काम नहीं कर रहे थे।	
इन्फिल कॉम्प्लेक्स वाटर इंजेक्शन	1988 और 2008	2010 (डी- ऑक्सीजनेशन टॉवर) और 2011 (डी- ऑक्सीजनेशन टॉवर और फाइन फिल्टर्स को नया रूप दिया गया)	2015	सुधार के बाद भी, डी- ऑक्सीजनेशन टॉवर और फाइन फिल्टर की प्रणाली उपलब्धता आवश्यकता से कम थी। 2+1 ऑपरेशन फिलॉसफी में से, 2014 से 2017 के दौरान एक बूस्टर पंप परिचालन के लिए उपलब्ध नहीं था। हालांकि, इसे अक्टूबर 2016 से सितंबर 2017 के दौरान स्टैंडबाय के रूप में बनाए रखा गया था। जल के इंजेक्शन की मांग को पूरा करने के लिए कुल 3 मुख्य इंजेक्शन पंपों की आवश्यकता है, लेकिन केवल 2 मुख्य इंजेक्शन पंप चालू स्थिति में हैं।	अनुमेय सीमा से अधिक हो गए हैं। वॉटर इंजेक्शन क्षमता का औसत क्षमता उपयोग केवल 42.96 <i>प्रतिशत</i> था , जो
वॉटर इंजेक्शन हीरा	1989 और 2009	2016 (बूस्टर पंप) और 2018 (बूस्टर	पंपों को बदला	डी-ऑक्सीजनेशन टॉवर टावरों के सुधार के बाद भी, मुख्य इंजेक्शन पंपों में	लक्ष्य को प्राप्त करने में

2021 की प्रतिवेदन संख्या 19

प्लेटफॉर्म	स्थापित और 20 वर्ष पूरे किए	प्रस्ताव शुरू (वर्ष) और अनुमोदन (वर्ष)	निर्धारित /संशोधित पूर्णता	प्लेटफार्मों में जल के इंजेक्शन उपकरण की विफलता	मात्रा/गुणवत्ता पर परिणामी प्रभाव
		पंप)	है। सितंबर 2019 में डी- ऑक्सीजनेशन टॉवर, फाइन फिल्टर्स को नया रूप दिया गया। सभी बूस्टर पंप बदले जा रहे हैं।	अतिरिक्त क्षमता को संभालने की क्षमता नहीं है। बूस्टर पंप और मुख्य इंजेक्शन पंप में बार-बार खराबी/ट्रिपिंग।	जल की गुणवत्ता, विशेष रूप से घुलित ऑक्सीजन
वॉटर इंजेक्शन नीलम	1994 और 2014		3 ब्स्टर पंप बदले गए। 2021 में 2 मुख्य इंजेक्शन पंप बदले जाएंगे। प्रतिस्थापन के तहत 3 समुद्री जल लिफ्ट पंप। प्रतिस्थापन के लिए रासायनिक	मुख्य इंजेक्शन पंप अपनी डिजाइन क्षमता के अनुसार सुपुर्द नहीं कर रहे थे। बूस्टर पंप और मुख्य इंजेक्शन पंप में बार-बार खराबी/ट्रिपिंग। 2+1 के डिजाइन सिद्धांत के विपरीत, केवल एक बूस्टर पंप परिचालित किया गया था। यहां तक कि सिस्टम उपलब्धता की रिपोर्टिंग भी विश्वसनीय नहीं है। 'डेटा कैप्चर नहीं किया गया' के रूप में रासायनिक खुराक पंपों की निगरानी का अभाव।	परिणामस्वरूप इंजेक्शन वाले जल के गुणवत्ता मानदंडों को बनाए रखने में विफलता हुई। नीलम में फरवरी 2018 से केवल एक मुख्य इंजेक्शन पंप चालू है। नीलम द्वारा पुनर्विकास योजना के लक्ष्य की प्राप्ति

स्रोतः लेखापरीक्षा आवश्यकताओं और टिप्पणियों के जवाब में कंपनी द्वारा प्रस्तुत डेटा, मासिक रिपोर्ट

प्रबंधन (फरवरी 2021) ने सुधार में देरी के लिए परिचालन कारणों और परियोजनाओं की पूंजी गहन प्रकृति को जिम्मेदार ठहराया और कहा कि सुधार एक नियमित रूप से चल रही प्रक्रिया है और कंपनी ने विभिन्न परियोजनाओं के तहत कई उपकरणों को बदला/ पुनर्निर्मित/ संशोधित किया है। इसने आगे कहा कि पुराने उपकरणों को बदलने/सुधारने के परिणामस्वरूप इंजेक्शन वाले जल की मात्रा और गुणवत्ता में सुधार हुआ है। प्रबंधन ने आगे कहा कि उपकरणों की मरम्मत/प्रतिस्थापन को देखते हुए ट्रिपिंग में काफी कमी आने की उम्मीद है।

प्रबंधन की प्रतिक्रिया को इस तथ्य की दृष्टि से देखने की आवश्यकता है कि सुविधाओं की आयु स्वीकृत आयु मानदंडों से कई वर्षों से अधिक हो गई है जिसके परिणामस्वरूप पुराने उपकरणों की विफलता/ अक्षमता और अप्रभावी संचालन हुआ है। समय पर कार्रवाई से जल के इंजेक्शन परिचालन में किमयों से बचा जा सकता था।

अनुशंसा संख्या 6

कंपनी को प्रणाली की उपलब्धता सुनिश्चित करने के लिए ओवरहालिंग और प्रतिस्थापन / सुधार के प्रस्तावों को समय पर शुरू करना चाहिए। इसके अलावा, रखरखाव कार्यों के लिए मूल उपकरण निर्माता की अनुशंसाओं का पालन किया जाना चाहिए।

4.10 महत्वपूर्ण वॉटर इंजेक्शन उपकरण का ओवरहालिंग

वर्ष 2006 की सीएजी रिपोर्ट²⁰ संख्या 8 का एक संदर्भ लें, जिसमें अन्य बातों के साथ-साथ, लेखापरीक्षा ने महत्वपूर्ण उपकरणों के ओवरहालिंग को पूरा करने में देरी पर टिप्पणी

की और अनुशंसा की कि कंपनी को ओवरहालिंग के लिए ओईएम मानदंडों का पालन करना चाहिए। प्रबंधन ने लेखापरीक्षा अवलोकन को स्वीकार किया और प्रक्रियात्मक देरी का हवाला दिया। वर्तमान लेखापरीक्षा के दौरान, यह देखा गया कि कंपनी मुख्य इंजेक्शन पंपों, बूस्टर पंपों और समुद्री जल लिफ्ट पंपों के लिए अपने ओवरहालिंग मानदंडों

का पालन कर रही है जो ओईएम द्वारा निर्धारित मानदंडों से कम कठोर है।

लेखापरीक्षा ने देखा कि स्वयं के मानदंडों पर विचार करने के बाद भी बड़ी संख्या में महत्वपूर्ण/प्रमुख उपकरणों में ओवरहालिंग में विलम्ब होता रहा। फरवरी 2020 तक, मुंबई हाई में 52 प्रतिशत महत्वपूर्ण/प्रमुख वॉटर इंजेक्शन रोटरी उपकरण ओवरहालिंग के लिए अतिदेय थे। यह इंगित करता है कि पिछली लेखापरीक्षा रिपोर्ट में की गई कार्रवाई नोट में दिए गए आश्वासन के बावजूद, बड़ी संख्या में मामलों में समय पर ओवरहालिंग का पालन न करना जारी रहा।

²⁰ 'ओएनजीसी में अपतटीय संस्थापनों के महत्वपूर्ण उपयोग की उपलब्धता और उपयोग' पर सीएजी की रिपोर्ट

साथ ही सक्षम प्राधिकारी से ओवरहाल शेड्यूल (अनुसूची) के विशिष्ट विस्तार के लिए अनुमोदन प्राप्त नहीं किया गया था। यहां तक कि जहां ओवरहालिंग किया गया था, यह ओईएम द्वारा निर्धारित अनुशंसित मानदंडों को प्राप्त करने वाले उपकरण के बहुत बाद था। ऐसी कुछ कमियों का विवरण नीचे दिया गया है:

- क) ओवरहालिंग के बाद भी पंपों का परिचालन किया गया। ऐसे कई उदाहरण थे जहां बार-बार खराब होने के बाद पंपों को बड़ी मरम्मत के लिए भेजा गया था। एक मामले में, ओईएम ने दर्ज किया था कि 'यूनिट ने अनुशंसित ओवरहाल अविध में काफी हद तक क्षिति के साथ काम किया है जिसे यूनिट के नियमित रखरखाव और निगरानी का पालन करके रोका जा सकता था'। व्यापक क्षिति को देखते हुए, उपकरण को किफायती मरम्मत से परे घोषित (दिसंबर 2019) किया गया।
- ख) कुछ पंपों को लगातार स्टैंडबाय के रूप में दिखाया गया और उसके बाद मरम्मत के लिए ले जाया गया, जिससे नीलम फील्ड में स्टैंडबाय अविध के दौरान उपकरण उपलब्धता की विश्वसनीयता पर संदेह उत्पन्न ह्आ।
- ग) ओवरहालिंग के प्रस्तावों को शुरू करने में काफी देरी हुई थी (कुछ मामलों में ओवरहालिंग के लिए प्रस्ताव मूल उपकरण निर्माता द्वारा निर्धारित घंटे से अधिक चलने के बाद शुरू किया गया था), कंपनी के मानदंडों के प्रति ओवरहालिंग के लिए निविदा को मंजूरी और अंतिम रूप दिया गया था। मुंबई हाई में इंडेंट की तारीख और ओवरहाल के वास्तविक समापन के बीच औसत समय अंतराल लगभग 40 महीने²¹ था। नीलम प्लेटफॉर्म पर दो मुख्य इंजेक्शन पंप (चार पंपों में से) चार साल से मूल उपकरण निर्माता कार्यशाला में थे।
- घ) जिन पंपों की मरम्मत की गई थी/बड़ी मरम्मत की गई थी, वे परिचालन के कुछ महीनों के भीतर विफल हो गए, जो इस तरह की मरम्मत की गैर-प्रभावकारिता की ओर इशारा करते हैं।
- च) नीलम प्लेटफॉर्म पर, दो की आवश्यकता के प्रति केवल एक मुख्य इंजेक्शन पंप परिचालित किया गया था, जब पंप विस्तारित अविध के लिए ओवरहाल के अधीन थे या जब एक से अधिक पंप मरम्मत के लिए भेजे गए थे।

²¹ प्रक्रिया शुरू होने की तारीख से महत्वपूर्ण उपकरणों की ओवरहालिंग के लिए लिया गया औसत समय।

छ) उपकरण जो अपने डिजाइन समय सीमा को समाप्त कर चुके थे, उन्हें अतिरिक्त चलने के घंटों के लिए ओईएम से आश्वासन के आधार पर बदलने के बजाय ओवरहाल किया गया था। तथापि, विफलताओं/ ट्रिपिंग ने ओवरहालिंग के बाद भी सुपुर्दगी और परिचालन क्षमता पर प्रतिकृल प्रभाव डालना जारी रखा।

इस प्रकार, वॉटर इंजेक्शन उपकरण के रखरखाव/ ओवरहालिंग के लिए समय पर हिष्टिकोण का अभाव है। कंपनी के अध्यक्ष एवं प्रबंध निदेशक द्वारा देखा गया (अप्रैल 2017) कि उपकरणों का ओवरहाल निर्धारित घंटों के बाद नहीं किया जा रहा है, क्योंकि अनुबंध समय पर नहीं दिए जा रहे हैं। सीएमडी ने जोर देकर कहा कि इस तरह के उपकरणों की विफलता के परिणामस्वरूप प्रक्रिया में व्यवधान के कारण उत्पादन के न्कसान से बचने के लिए बिना किसी देरी के ओवरहाल किया जाना चाहिए।

प्रबंधन/मंत्रालय ने कहा (फरवरी 2021/जून 2021) कि यदि सभी ऑपरेटिंग मापदंडों को सीमा के भीतर बनाए रखा जा रहा है, तो अनुशंसित अविध से अधिक, उपकरण संचालित किया जा सकता है। उपकरण की ओवरहालिंग/पंपों को बदलने के लिए कार्रवाई की जा रही है और कार्यान्वयन के विभिन्न चरणों में हैं। मुख्य इंजेक्शन पंप जो ओवरहाल के तुरंत बाद विफल हो गया, वारंटी मरम्मत के अधीन है।

प्रबंधन के जवाब को ट्रिपिंग/विस्तारित अविधयों की अनुपलब्धता और पुराने उपकरणों की कई विफलताओं के संदर्भ में देखा जाना चाहिए। इसके कारण नियोजित आवश्यक इंजेक्शन मात्रा की उपलब्धि नहीं हो सकी। उपकरणों को बदलने में भी बहुत देरी होती है जिसके कारण परिचालन में किमयां होती हैं। उपकरण की ओवरहालिंग, विशेष रूप से निविदा के अनुमोदन और अंतिम रूप देने में लगने वाले अत्यधिक समय (औसत 40 महीने) पर प्रबंधन का कोई जवाब नहीं है।

अनुशंसा संख्या 7

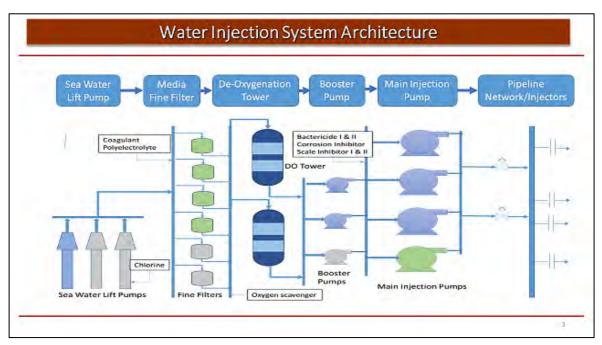
मरम्मत बनाम प्रतिस्थापन निर्णय लेते समय पुराने पंपों की दक्षता पर भी विचार किया जाता है, यह सुनिश्चित करने के लिए प्रतिस्थापन नीति पर फिर से विचार करने की आवश्यकता है।

4.11 वॉटर इंजेक्शन उपकरण की ट्रिपिंग

महत्वपूर्ण उपकरणों की खराब स्थिति, प्रभावी रखरखाव/ ओवरहालिंग की कमी और समय पर प्रतिस्थापन के कारण मुख्य इंजेक्शन पंपों में बार-बार ट्रिपिंग देखी गई। मुंबई हाई में, इन्फिल कॉम्प्लेक्स वाटर इंजेक्शन साउथ हाई वाटर इंजेक्शन और वाटर इंजेक्शन साउथ प्लेटफॉर्म में ट्रिपिंग मुख्य इंजेक्शन पंपों की संख्या अन्य दो प्लेटफार्मीं, वाटर इंजेक्शन नॉर्थ और मुंबई नॉर्थ वाटर की तुलना में अधिक थी। यह मुख्य इंजेक्शन पंपों के ओवरहालिंग में देरी के कारण था जिससे इसकी प्रणाली की उपलब्धता प्रभावित हुई और परिणामस्वरूप जल के इंजेक्शन की हानि हुई। नीलम और हीरा में, मुख्य इंजेक्शन पंपों के ट्रिपिंग के लिए बूस्टर पंप की विफलता/रिसाव और टरबाइन जनरेटर के ट्रिपिंग के कारण को जिम्मेदार ठहराया गया था। ऐसे कई उदाहरण हैं जहां दबाव बनाए रखने के लिए केवल एक मुख्य इंजेक्शन पंप उपलब्ध था। हीरा के मामले में, अधिकांश ट्रिपिंग को जल इंजेक्शन लाइन के रिसाव के लिए जिम्मेदार ठहराया गया था।

प्रबंधन/मंत्रालय ने कहा (फरवरी 2021/जून 2021) कि महत्वपूर्ण उपकरणों और इसके बाह्य उपकरणों के लिए किए गए सुधार/ प्रतिस्थापन कार्रवाई के कारण आगे चलकर ट्रिपिंग में काफी कमी आने की उम्मीद है।

उत्तर को सुधार/ प्रतिस्थापन कार्रवाई में देरी के कारण जल के इंजेक्शन के नुकसान की हिष्ट से देखा जाना चाहिए।


4.12 संक्षेप

कंपनी जल इंजेक्शन उपकरण के समय पर प्रतिस्थापन/ ओवरहालिंग को सुनिश्चित नहीं कर सकी। कई उपकरणों ने अपने डिजाइन परिचालन जीवन को समाप्त कर दिया था, जिसने उपकरण की परिचालन उपलब्धता और विश्वसनीयता को प्रभावित किया था। क्लोरीनेटर, जल की गुणवत्ता सुनिश्चित करने वाले महत्वपूर्ण उपकरणों में से एक, कई वॉटर इंजेक्शन प्लेटफार्मों में आठ वर्षों से अधिक समय से काम नहीं कर रहा था। ओईएम द्वारा निर्धारित उनके अनिवार्य चलने के घंटे और कंपनी द्वारा निर्धारित चलने के घंटे के बाद महत्वपूर्ण उपकरणों का समय पर सुधार भी सुनिश्चित नहीं किया गया था। इसके परिणामस्वरूप जलाशय में इंजेक्ट किए गए जल की गुणवत्ता और मात्रा दोनों को प्रभावित करने वाले उपकरणों की बार-बार विफलता/ट्रिपिंग हुई। मैनुअल रिपोर्टिंग में विसंगतियां देखी गईं जिसने उपकरण निष्पादन डेटा को अविश्वसनीय बना दिया। इसके अलावा, एसएपी में प्लांट मेंटेनेंस मॉड्यूल का अनुरक्षण/उपकरण निष्पादन स्तरों की निगरानी के लिए उचित रूप से उपयोग नहीं किया गया था। इस प्रकार, वॉटर इंजेक्शन स्विधाएं वॉटर इंजेक्शन आवश्यकताओं को पूरा करने के लिए अपर्याप्त थीं।

अध्याय 5 वॉटर इंजेक्शन की गुणवत्ता

कंपनी के पश्चिमी अपतटीय तेल क्षेत्रों में, समुद्री जल जलाशय में इंजेक्शन के लिए जल का एकमात्र स्रोत है, खासकर इसकी पहुंच में आसानी के कारण। हालाँकि, इसमें अत्यधिक लवण, सस्पेंडेड ठोस, घुलित ऑक्सीजन है तथा वनस्पतियों और जीवों से समृद्ध है। इसलिए, इसके उपयोग से कई क्रिया परिचालन समस्याएं हो सकती हैं जैसे:

- इंजेक्टर और निर्माता में पैमाने का निर्माण, जो इंजेक्शन और फॉर्मेशन जल के बीच विसंगति के कारण हो सकता है;
- जीवाण् वृद्धिः;
- ऑक्सीजन और सोडियम क्लोराइड के संयुक्त प्रभाव के कारण प्रसंस्करण स्थापना और पाइपलाइन इंजेक्शन नेटवर्क में उपकरणों का क्षरण; तथा
- सस्पेंडेड ठोस, संक्षारण और जीवाणु उपोत्पाद के कारण इंजेक्शन कुओं को बंद करना। इसलिए यह आवश्यक है कि इंजेक्शन से पहले समुद्री जल का प्रभावी ढंग से उपचार किया जाए। इसलिए इंजेक्शन जल के लिए उपचार योजना इस तरह से डिजाइन की गई है कि जल उपर्युक्त समस्याओं से मुक्त हो।

चित्र 5.1 वॉटर इंजेक्शन प्रणाली आर्किटेक्चर

5.1 समुद्री जल का उपचार

वॉटर इंजेक्शन प्रक्रिया में प्रयुक्त उपकरण का वर्णन पैरा 4.2 में किया गया है। वॉटर इंजेक्शन प्लेटफॉर्म पर समुद्री जल के उपचार में मुख्य रूप से निम्नलिखित उप-प्रक्रियाएं शामिल हैं:

- समुद्री जल उठाना: समुद्री जल को समुद्री जल लिफ्ट पंपों द्वारा उठाया जाता है
 और कोर्स फिल्टर में पंप किया जाता है। क्लोरीनेटर इकाइयों में उत्पन्न हाइपोक्लोराइट घोल को समुद्री जल पाइपिंग सिस्टम में समुद्री वृद्धि को नियंत्रित करने के लिए पंप सक्शन में इंजेक्ट किया जाता है।
- निस्पंदन: फिर समुद्री जल को फाइन फिल्टरों से गुजारा जाता है तािक सस्पेंडेड ठोस पदार्थ निकल जाएं। परिचालन के दौरान फ़िल्टर किए गए जल के साथ निरंतर बैकवाश चक्र में ठीक फ़िल्टर तत्व स्वचािलत रूप से साफ हो जाते हैं। सस्पेंडेड ठोस को जमाने में मदद करने के लिए कोगुलेंट / पॉलीइलेक्ट्रोलाइट को फिल्टर इनलेट में डाला जाता है।
- डी-ऑक्सीजनेशन: फ़िल्टर किए गए जल को ऑक्सीजन के स्तर को 200 पीपीबी तक कम करने के लिए डी-ऑक्सीजनेशन टावरों के माध्यम से गुजारा जाता है और ऑक्सीजन स्कॅवेंजर रसायन घुलित ऑक्सीजन को <20 पीपीबी की अनुमेय सीमा तक कम कर देता है। यह उपकरण और पाइपलाइनों के आंतरिक क्षरण को रोकता है। इंजेक्शन वाले जल में घुलित ऑक्सीजन आदर्श रूप से 'शून्य' होनी चाहिए।
- रासायनिक इंजेक्शन: सिस्टम में विभिन्न बिंदुओं पर जल बाढ़ धारा में विभिन्न रसायनों के भंडारण और इंजेक्शन के लिए एक रासायनिक इंजेक्शन प्रणाली प्रदान की जाती है।

उपचारित जल को बूस्टर पंपों और मुख्य इंजेक्शन पंपों की मदद से वाटर इंजेक्शन नेटवर्क में पंप किया जाता है।

5.2 कंपनी द्वारा अपनाए गए जल गुणवत्ता मानदंड

कंपनी ने जलाशय में जल डालने के लिए उपयुक्त जल गुणवत्ता मानदंड निर्धारित किए हैं। वांछित गुणवत्ता मानदंड और पश्चिमी अपतटीय तेल क्षेत्रों में वॉटर इंजेक्शन रसायनों की अन्शंसित ख्राक तालिका 5.1 में दी गई है।

तालिका 5.1: वांछित गुणवत्ता मानदंड और रसायनों की अनुशंसित खुराक

गुणवत्ता	गुणवत्ता ः	मीमा	गुणवत्ता	रासायनिक	रसायन का	खुराक	गुणवत्ता	मापने के
पैरामीटर			पैरामीटर बनाए	इंजेक्शन	कार्य	बिंदु	मानकों	अंक
T (IIII)	इकाई	सीमा	रखने के लिए	की		3	की जांच	
			प्रयुक्त रसायन	 अनुशंसित			के लिए	
			का नाम	खुराक-			मापने	
				एमएच /			की विधि	
				एन एंड				
				एच				
क्ल	मिलीग्राम	<0.2	कोगुलेंट/पॉलीइले	0.4-0.8	कोगुलेशन	फ़िल्टर	लैब जांच	फ़िल्टर
सस्पेंडेड	/ लीटर		क्ट्रोलाइट	पीपीएम /	और	इनलेट		आउटलेट /
ठोस				0.2-0.3	निस्पंदन			मुख्य
				पीपीएम	में सहायता			डं इंजेक्शन पंप
								आउटलेट
मिलीपोर	लीटर/	>6	कोगुलेंट/पॉलीइले	0.4- 0.8	कोगुलेशन	फ़िल्टर	लैब जांच	फ़िल्टर
	30		क्ट्रोलाइट	पीपीएम /	और	इनलेट		आउटलेट /
	मिनट			0.2 -0.3	निस्पंदन			मुख्य
				पीपीएम	में सहायता			इंजेक्शन पंप
								आउटलेट
गंदगी	एनटीयू	<0.2	कोगुलेंट/पॉलीइले	0.4 -0.8	कोगुलेशन	फ़िल्टर	लैब जांच	फ़िल्टर
			क्ट्रोलाइट	पीपीएम /	और	इनलेट		आउटलेट /
				0.2- 0.3	निस्पंदन			मुख्य
				पीपीएम	में सहायता			इंजेक्शन पंप
								आउटलेट
कण	संख्या /	<2000	कोगुलेंट/पॉलीइले	0.4 -	कौयगुलेशन	फ़िल्टर	लैब जांच	फ़िल्टर
गणना	एमएल		क्ट्रोलाइट	0.8	और	इनलेट		आउटलेट /
				पीपीएम /	निस्पंदन			मुख्य
				0.2-0.3	में सहायता			इंजेक्शन पंप
				पीपीएम				आउटलेट
विघटित	पीपीबी	<20	ऑक्सीजन	10	इंजेक्शन	डी-	लैब	डी-
ऑक्सीजन			स्कॅवेंजर	पीपीएम/	जल से	ऑक्सी	चेक/ऑन	ऑक्सीजनेश
				2-10	घुलित	जनेशन	लाइन	न टॉवर
				पीपीएम	ऑक्सीजन	टॉवर		आउटलेट
					हटाना			
अवशिष्ट	मिलीग्राम/	> 1	ऑक्सीजन		ऑक्सीजन		लैब जांच	डी-
सल्फाइट	ली.		स्कॅवेंजर		कम करने			ऑक्सीजनेश
					वाले की			न टॉवर
					अवशिष्ट			आउटलेट
					उपस्थिति			
					संकेत			

गुणवत्ता	गुणवत्ता ः	तीमा	गुणवत्ता	रासायनिक	रसायन का	खुराक	गुणवत्ता	मापने के
पैरामीटर	इकाई	सीमा	पैरामीटर बनाए रखने के लिए प्रयुक्त रसायन का नाम	इंजेक्शन की अनुशंसित खुराक- एमएच / एन एंड एच	कार्य	बिंदु	मानकों की जांच के लिए मापने की विधि	अंक
लौह गणना	मिलीग्राम / लीटर	<0.05	क्षरण अवरोधक	20 पीपीएम / 10 पीपीएम	क्षरण रोकना	बूस्टर पंप इनलेट/ मुख्य इंजेक्श न पंप	प्रयोगशा ला जांच	मुख्य इंजेक्शन पंप आउटलेट
सल्फाइड	मिलीग्राम/ लीटर		हीरा (एन एंड एच)		उपचार पैरामीटर नहीं	मुख्य इंजेक्श न पंप	प्रयोगशा ला जांच	मुख्य इंजेक्शन पंप

. स्रोतः अपनाए गए वांछित जल गुणवत्ता मानदंड के संबंध में मुंबई हाई, नीलम और हीरा से प्रबंधन की प्रतिक्रिया प्राप्त हुई।

5.2.1 जल की गुणवत्ता के मानकों को कम करना

इस अवधि के दौरान, कंपनी ने तालिका 5.2 में दिए गए विवरण के अनुसार जल की गुणवत्ता के कुछ मानकों को कम किया है।

तालिका 5.2 जल गुणवत्ता मानकों का कमजोर पड़ना

गुणवत्ता पैरामीटर	जल गुणवत्ता निगरानी मानकों के परीक्षण विधियों पर क्षेत्रीय रासायनिक प्रयोगशाला रिपोर्ट (फरवरी 1984)	इंजेक्शन जल गुणवत्ता' पर आईआरएस	प्लेटफॉर्म पर केमिस्ट के लिए गुणवत्ता नियंत्रण परीक्षण प्रक्रियाएं	
सस्पेंडेड ठोस	0.1 मिलीग्राम/लीटर		<0.1 मिलीग्राम/लीटर	<0.2 मिलीग्राम/लीटर
कण गणना		<70 संख्या/लीटर	<300 संख्या /लीटर	<2000 संख्या/लीटर
मिलीपोर			> 10 लीटर/ 30 मिनट	>6 लीटर/ 30 मिनट

गुणवत्ता पैरामीटर	जल गुणवत्ता निगरानी मानकों के परीक्षण विधियों पर क्षेत्रीय रासायनिक प्रयोगशाला रिपोर्ट (फरवरी 1984)	इंजेक्शन जल गुणवत्ता' पर आईआरएस	प्लेटफॉर्म पर केमिस्ट के लिए गुणवत्ता नियंत्रण परीक्षण प्रक्रियाएं									
विघटित	15 भाग प्रति बिलियन			<20 पीपीबी								
ऑक्सीजन	(पीपीबी)											
अवशिष्ट			> 0.1	>1 मिलीग्राम/लीटर								
सल्फाइट			मिलीग्राम/लीटर									
स्रोतः लेखापरीक्षा ३	भावश्यकताओं के जवाब में	कंपनी द्वारा प्रस्तु	त डेटा/रिपोर्ट	स्रोतः लेखापरीक्षा आवश्यकताओं के जवाब में कंपनी द्वारा प्रस्तृत डेटा/रिपोर्ट								

प्रबंधन/मंत्रालय ने कहा (जनवरी 2020/फरवरी 2021) कि क्षेत्र के अनुभव, जलाशय की स्थिति और अन्य तकनीकी इनपुट के आधार पर, इंजेक्शन जल के मापदंडों को समय-समय पर फिर से डिजाइन किया गया था। जैसा कि अध्याय 4 में उल्लेख किया गया है, जल के इंजेक्शन उपकरण के पुराने होने के संदर्भ में गुणवत्ता कमजोर पड़ने को देखा जाना चाहिए।

5.3 इंजेक्शन जल की ग्णवत्ता

मुंबई हाई तथा नीलम और हीरा क्षेत्रों में जल के इंजेक्शन प्लेटफार्मों पर मापे गए जल की औसत गुणवत्ता अनुलग्नक-IX में दी गई है। अनुलग्नक से यह देखा जा सकता है कि लगभग सभी वॉटर इंजेक्शन प्लेटफार्मों में जल की गुणवत्ता कंपनी द्वारा वर्तमान में पालन किए जाने वाले गुणवत्ता मानकों से कम थी। एक समयाविध बीत जाने के बाद भी कुछ गुणवत्ता मानकों को कमजोर करने के बावजूद, कंपनी वांछित गुणवत्ता मानकों को पूरा करने में विफल रही। इसके अलावा, कुछ गुणवत्ता मानकों (जैसे घुलित ऑक्सीजन, कणों की संख्या, मैलापन) में गिरावट की प्रवृत्ति दिखाई दी।

प्रबंधन/मंत्रालय ने कहा (फरवरी/जून 2021) कि कंपनी ने वांछित गुणवत्ता को पूरा करने के लिए वॉटर इंजेक्शन सुविधाओं में अपेक्षित संशोधन/सुधार किया/ कर रही है। उत्तर को लंबे समय तक जल की गुणवत्ता बनाए रखने में विफलता के संदर्भ में देखा जाना चाहिए, जिसके परिणामस्वरूप पाइपलाइनों/उपकरणों में क्षरण हो गया और कुओं की अंतःक्षिप्तता प्रभावित हुई। विलंबित कार्रवाई प्रतिक्रियाशील है और इसमें शामिल लागतों और इसकी प्रभावकारिता पर परिणामी प्रभाव पड़ता है।

5.4 जल गुणवत्ता मानकों की गलत रिपोर्टिंग

लेखापरीक्षा ने जल की गुणवत्ता की रिपोर्टिंग में निम्नलिखित भिन्नताएं और विसंगतियां देखीं:

- गुणवत्ता मानकों के मासिक औसत की गणना करते समय, ऐसे मामलों को शामिल नहीं किया गया जहां यह स्वीकार्य सीमा से अधिक था।
- ii) जब घुलित ऑक्सीजन 200 पीपीबी से अधिक दर्ज की गई थी तब भी घुलित ऑक्सीजन का औसत जल गुणवत्ता पैरामीटर 'शून्य' बताया गया था। इसी तरह, वार्षिक औसत मासिक आंकडों के साथ असंगत था।
- iii) इंजेक्शन के जल में घुली हुई ऑक्सीजन निर्धारित सीमा के भीतर दर्ज की गई थी, भले ही ऑक्सीजन स्कॅवेंजर की खपत नहीं थी।
- iv) ऑक्सीजन स्कॅवेंजर की खपत उन दिनों में भी दर्ज की गई थी जब रासायनिक इंजेक्शन टैंक में मात्रा 'शून्य' थी।

इस प्रकार, कंपनी द्वारा दर्ज और रिपोर्ट किए गए जल की गुणवत्ता विश्वसनीय नहीं है। प्रबंधन/मंत्रालय ने कहा कि मैनुअल डेटा प्रविष्टि में कुछ त्रुटि हुई है और अपतट पर दलों को डेटा रिकॉर्ड करने और एसएपी प्रणाली में फीडिंग करते समय उचित परिश्रम करने की सलाह दी गई है।

अनुशंसा संख्या 8

एसएपी सिस्टम में डाटा रिकॉर्ड करने और फीडिंग करते समय उचित सावधानी सुनिश्चित की जानी चाहिए ताकि जलाशय में इंजेक्शन के लिए आवश्यक वांछित गुणवत्ता मानकों की निगरानी और सुनिश्चित किया जा सके।

5.5 खराब जल गुणवत्ता मानकों के कारण

इंजेक्शन जल की खराब गुणवत्ता वॉटर इंजेक्शन सुविधाओं की पुराने होने/ उचित रखरखाव की कमी के कारण थी जिसकी चर्चा पहले ही अध्याय 4 में की जा चुकी है। वॉटर इंजेक्शन प्लेटफार्मों पर आवश्यक वॉटर इंजेक्शन रसायनों की अनुपलब्धता, रासायनिक इंजेक्शन पंपों की अनुपलब्धता/अक्षम परिचालन इंजेक्शन जल की गुणवत्ता को बनाए रखने में विफलता में भी सीधे योगदान देता है (तालिका 5.3 में उल्लिखित)।

तालिका 5.3 वर्ष 2014-19 के दौरान वॉटर इंजेक्शन रसायनों की 'शून्य' खपत का विवरण

प्लेटफार्म	कोगुलेंट और पीएसी दोनों		ऑक्सीजन के स्तर को कम करने वाला		जल संक्षारण अवरोधक		जीवाणुनाशक	
	शून्य खपत के दिन (क)	(क) / 5 साल (<i>प्रतिशत</i> में)	शून्य खपत के दिन (ख)	(ख) <i>l</i> 5 साल (<i>प्रतिशत</i> में)	शून्य खपत के दिन (ग)	(ग) / 5 साल (<i>प्रतिशत</i> में)	* शून्य खपत के महीने (घ)	(घ) *30 <i>/</i> 5 साल (<i>प्रतिशत</i> में)
डब्ल्यूआईएन	102	05.59	152	08.33	457	25.04	02	3.33
एमएनडब्ल्यू	152	08.33	254	13.92	663	36.33	00	00
एसएच्डब्ल्यू	907	49.70	492	26.96	618	33.86	05	8.33
आईसीडब्ल्यू	407	22.30	357	19.56	424	23.23	07	11.67
डब्ल्यूआईएस	250	13.70	412	22.58	480	26.30	06	10.00
एनएलडब्ल्यू	98	05.36	57	03.12	59	03.80	-	-
डब्ल्यूआईएच	25	01.61	1 1	-	70	04.51	-	-

डब्ल्यूआईएन - वॉटर इंजेक्शन नॉर्थ, एमएनडब्ल्यू- मुंबई नॉर्थ वॉटर इंजेक्शन, एसएचडब्ल्यू- साउथ हाई वॉटर इंजेक्शन, आईसीडब्ल्यू- इंफिल कॉम्प्लेक्स वॉटर इंजेक्शन, डब्ल्यूआईएस - वॉटर इंजेक्शन साउथ, एनएलडब्ल्यू - नीलम वॉटर इंजेक्शन और डब्ल्यूआईएच - वॉटर इंजेक्शन हीरा

स्रोतः प्लेटफार्म दैनिक उत्पादन रिपोर्ट (डीपीआर) और रसायन विज्ञान मासिक रिपोर्ट

*कंपनी प्रत्येक 10 दिनों के बाद वैकल्पिक रूप से तीन प्रकार के जीवाण्नाशकों की ख्राक देती है।

जैसा कि तालिका से देखा जा सकता है, वॉटर इंजेक्शन प्लेटफॉर्म पर रसायन की अनुपलब्धता और/या रासायनिक इंजेक्शन पंप की कमी के कारण अनुशंसित खुराक मानदंड (जैसा कि तालिका 5.1 में दर्शाया गया है) के प्रति बड़ी संख्या में रसायनों की खपत 'शून्य' थी।

मुंबई हाई में, सभी प्लेटफार्मों पर कंपनी द्वारा अपनाई गई अनुशंसित खुराक के मुकाबले रसायनों की कम खुराक थी (विवरण अनुलग्नक-X पर)। वर्ष 2014 - 2019 के दौरान मुंबई हाई में जल संक्षारण अवरोधक अनुशंसित मानदंडों से कम था। ऑक्सीजन स्कॅवेंजर के मामले में, वर्ष 2018-19 के दौरान वाटर इंजेक्शन साउथ और इनिफल कॉम्प्लेक्स वाटर इंजेक्शन प्लेटफॉर्म को छोड़कर, खुराक वर्ष 2014-15 से 2018-19 के दौरान अनुशंसित मानदंडों से कम थी।

जहां भी ऑक्सीजन स्कॅवेंजर की 'शून्य' खपत थी, इंजेक्शन जल में उच्च घुलित ऑक्सीजन दर्ज की गई थी। नीलम वाटर इंजेक्शन प्लेटफॉर्म में 1,826 दिनों में से 54 दिनों के लिए, ऑक्सीजन स्कॅवेंजर की 'शून्य' खुराक थी और यह उन दिनों मुख्य इंजेक्शन पंप (25 से 800 पीपीबी) पर उच्च घुलित ऑक्सीजन स्तरों के साथ सहसंबद्ध था और हीरा में, 60 महीनों में से 43 महीनों में खपत 10 पीपीएम से कम थी। शेष सल्फाइट नीलम में 323 दिनों (1,826 दिनों में से) और हीरा में 241 दिनों (1,551 दिनों में से) में 'शून्य' पाया गया, जो दर्शाता है कि घुलित ऑक्सीजन का वांछित स्तर बनाए नहीं रखा गया था। हीरा में 70 दिनों हेतु प्लेटफॉर्म पर जल संक्षारण अवरोधक की खुराक नहीं थी, जिसमें से 59 दिनों में प्लेटफॉर्म पर केमिकल का स्टॉक नहीं होने के कारण ऐसा हुआ। इसी तरह नीलम में भी 57 दिनों से जल संक्षारण अवरोधक की डोज नहीं मिली। वर्ष 2014-15 से 2018-19 के 60 महीनों में से 52 महीनों के दौरान, नीलम में जल संक्षारण अवरोधक की खुराक कंपनी द्वारा अपनाए गए स्तरों से कम थी और नीलम मुख्य इंजेक्शन पंप के छोर पर 1,756 दिनों में (1,826 दिनों में से) लोहे की मात्रा 0.05 पीपीएम से अधिक थी।

जल संक्षारण अवरोधक के मामले में, कंपनी ने 20 पीपीएम की खुराक की आवश्यकता के मुकाबले खरीद के लिए 8 पीपीएम पर अपेक्षाकृत कम खुराक हेतु विचार किया। वर्ष 2016-17 से खरीद को संशोधित कर 20 पीपीएम कर दिया गया था लेकिन औसत खपत अन्शंसित मानदंडों से कम रही।

पाइपलाइनों की विफलता और संक्षारण के मुद्दों का अध्ययन करने के लिए बनाए गए मैनुअल²², इन-हाउस अनुसंधान संस्थानों²³ और समितियों²⁴ ने आवश्यक खुराक पर रसायनों के इंजेक्शन की कमी को बताया, उपकरण/पाइपलाइनों के क्षरण के मुख्य कारणों में से एक के रूप में एक इंजेक्शन नेटवर्क के बंद होने के कारण इंजेक्शन की कमी है। विभिन्न समितियों/संस्थानों द्वारा समय-समय पर दोहराए जाने के बावजूद, रसायनों की खुराक के अनुशंसित स्तरों को सुनिश्चित नहीं किया गया था। एसएपी के आंकड़ों से यह देखा गया कि जल के इंजेक्शन वाले कुओं के नहीं बहने (नॉन-फ्लोइंग) का सबसे महत्वपूर्ण कारण पाइपलाइन में रिसाव था।

²² क्षेत्रीय रासायनिक प्रयोगशाला (आरजीएल - फरवरी 1984), अपतटीय इंजेक्शन जल की गुणवत्ता पर मैनुअल (मार्च 1994), कॉपॉरेट ऑयल फील्ड रासायनिक विनिर्देश (2007) रसायनों की समयपूर्व विफलता (अगस्त 2014)।

²³ आईआरएस अध्ययन रिपोर्ट मार्च 2011, 2012, आईओजीपीटी - क्षरण अध्ययन रिपोर्ट (अप्रैल 1994), आईईओटी (अगस्त 2012, अक्टूबर 2012)।

पाइपलाइनों की समयपूर्व विफलता पर समिति अध्ययन रिपोर्ट (अगस्त 2014), जल इंजेक्शन सुधार पर आंतरिक समिति की रिपोर्ट (जुलाई 2012)

उचित खुराक के बिना, गुणवत्ता मानकों को बनाए नहीं रखा जा सकता था। संक्षारण को रोकने के लिए संक्षारण अवरोधकों की आवश्यकता थी। ऑक्सीजन स्कॅवेंजर को डी-ऑक्सीजनेशन टावरों के डाउनस्ट्रीम में शेष ऑक्सीजन अणुओं को अवशोषित करने की आवश्यकता थी क्योंकि पाइपलाइन/उपकरण के आंतरिक क्षरण के लिए घुलित ऑक्सीजन को हटाना आवश्यक है। पॉली एल्युमिनियम क्लोराइड/पॉलीइलेक्ट्रोलाइट/कोगुलेंट छोटे, रुके हुए कणों को मिलाने के लिए फिल्टर की सहायता करते हैं। निस्पंदन रसायनों की अपर्याप्त खुराक और परिणामस्वरूप सस्पेंडेड ठोस पदार्थों की उपस्थिति से फॉर्मेशन प्लगिंग हो सकता है। जीवाणुनाशक यह सुनिश्चित करते हैं कि इंजेक्शन का जल सूक्ष्म जीवों से मुक्त है और इस तरह माइक्रोबियल प्रेरित क्षरण को रोकता है।

प्रबंधन/मंत्रालय ने कहा (फरवरी/जुलाई 2021) कि इंजेक्शन जल की गुणवत्ता के संबंध में लेखापरीक्षा के विचार को अच्छी तरह से लिया गया है और विभिन्न सतही सुविधाएं पुराने होने के कारण लगभग सभी प्लेटफार्मों पर अपनी पूरी दक्षता से काम नहीं कर रही हैं। प्रबंधन ने आगे कहा कि कंपनी ने समय-समय पर जल के इंजेक्शन की गुणवत्ता और मात्रा में सुधार के लिए कई पहल की हैं और यह परिपक्व क्षेत्र के वातावरण और स्थापित उपकरणों/प्रणालियों/उप-प्रणालियों के पुराने होने पर विचार करते हुए यह एक नियमित रूप से चल रही प्रक्रिया है। प्रबंधन ने कहा कि अपतटीय परिचालन से संबंधित कुछ बाहरी कारक भी हैं जैसे खराब मौसम की स्थिति, प्लेटफॉर्म पर सीमित भंडारण स्थान, लॉजिस्टिक समस्याएं और ख्राक पंप के मृद्दे।

प्रबंधन का उत्तर संतोषजनक नहीं है क्योंकि सामने आई बाधाओं को नियंत्रित किया जा सकता है और जल की खराब गुणवत्ता एक लंबे समय से चली आ रही समस्या है। कंपनी की आंतरिक समिति ने यह भी पाया कि इंजेक्शन के जल में अत्यधिक घुलित ऑक्सीजन पाइपलाइनों के समय से पहले विफल होने का प्रमुख कारण था; बार-बार रिसाव के अलावा, कुओं के बंद होने से अंततः वॉटर इंजेक्शन परिचालन प्रभावित हुआ। लॉजिस्टिक्स/भंडारण बाधाओं के संबंध में उत्तर भी इतनी बड़ी संख्या में शून्य/कम रसायनों की खपत को ध्यान में रखते हुए संतोषजनक नहीं है। विभिन्न प्रकार के वॉटर इंजेक्शन रसायनों की औसत भंडारण क्षमता दो सप्ताह की खपत से अधिक है। इसके अलावा, कंपनी मानव रहित प्लेटफार्मों पर रसायनों के भंडारण पर विचार कर सकती है और जरूरत पड़ने पर समर्पित नावों के माध्यम से जल के इंजेक्शन प्लेटफॉर्म पर परिवहन कर सकती है।

2021 की प्रतिवेदन संख्या 19

प्रबंधन/मंत्रालय ने आगे कहा (फरवरी/जून 2021) कि मानव रहित प्लेटफॉर्म पर रसायनों के भंडारण के संबंध में लेखापरीक्षा सुझाव को स्टॉक आउट स्थितियों से बचने के लिए और अधिक सावधानी बरतने के लिए नोट किया गया है।

अनुशंसा संख्या 9

मानदंडों के अनुसार पर्याप्त रसायनों की खुराक को बनाए रखा जाना चाहिए ताकि समय पर सुधारात्मक कार्रवाई के लिए जल के गुणवत्ता मानकों की निगरानी की जा सके।

5.5.1 रासायनिक ख्राक की गलत रिपोर्टिंग

लेखापरीक्षा ने देखा कि किसी विशेष महीने के दौरान रसायन की औसत खुराक की गणना के लिए इस्तेमाल की जाने वाली विधि गलत थी क्योंकि औसत खुराक की गणना करते समय खपत न होने वाले दिनों को छूट दी गई थी। चूंकि इंजेक्शन जल की गुणवत्ता बनाए रखने के लिए रसायनों (बायोसाइइस को छोड़कर) की लगातार खुराक दिया जाना है, इसलिए अपनाई गई कार्यप्रणाली के परिणामस्वरूप गलत रिपोर्टिंग हुई। लेखापरीक्षा ने एक वर्ष के लिए रसायनों की औसत खुराक का विश्लेषण किया और पाया कि 43.33 प्रतिशत मामलों में गलत रिपोर्टिंग की गई थी।

प्रबंधन/मंत्रालय ने स्धारात्मक कार्रवाई का आश्वासन दिया (फरवरी/जून 2021)।

5.5.2 गुणवत्ता मापन उपकरणों का काम न करना

गुणवत्ता मापन उपकरणों का औसत जीवन सात वर्ष था। गुणवत्ता मापन उपकरणों के काम न करने के कारण कण गणना(पार्टिकल काउंट) और कुल सस्पेंडेड ठोस के महत्वपूर्ण गुणवत्ता मानकों को कैप्चर नहीं किया गया। इनिफल कॉम्प्लेक्स वाटर प्लेटफॉर्म में अप्रैल 2014 के बाद से पार्टिकल काउंट को कैप्चर नहीं किया गया था। वाटर इंजेक्शन साउथ, इंफिल कॉम्प्लेक्स वाटर, साउथ हाई वाटर इंजेक्शन और वाटर इंजेक्शन नॉर्थ के लिए पार्टिकल साइज़ एनालाइजर और वाटर इंजेक्शन साउथ प्लेटफॉर्म के लिए टर्बिडिटी मीटर बहुत पहले खरीदे गए थे। मूल उपकरण निर्माता समर्थन के बिना उपकरण गैर-कार्यात्मक/प्राना था।

प्रबंधन/मंत्रालय ने कहा (फरवरी/जून 2021) कि वाटर इंजेक्शन साउथ, वाटर इंजेक्शन नॉर्थ और मुंबई नॉर्थ वाटर इंजेक्शन प्लेटफॉर्म पर नए पार्टिकल एनालाइजर लगाए गए हैं तथा इन्फिल कॉम्प्लेक्स वाटर इंजेक्शन और साउथ हाई वाटर इंजेक्शन प्लेटफॉर्म में श्रू

किए जाने हैं। मुख्य इंजेक्शन पंप छोर पर वाटर इंजेक्शन साउथ, इनिफल कॉम्प्लेक्स वाटर, साउथ हाई वाटर इंजेक्शन और वाटर इंजेक्शन नॉर्थ प्लेटफॉर्म पर टर्बिडिटी मीटर लगाए गए हैं।

प्रबंधन कार्रवाई को निर्णायक गुणवत्ता मानकों को पकड़ने में निरंतर अनुपयोगी/विफलता की दृष्टि से देखे जाने की आवश्यकता है।

5.5.3 रासायनिक इंजेक्शन पंप की अक्षमता/अनुपलब्धता

इंजेक्शन जल की वांछित गुणवत्ता बनाए रखने के लिए पूर्व-निर्धारित आवृत्ति के वांछित खुराक पर विभिन्न वॉटर इंजेक्शन रसायनों को लगातार इंजेक्ट (खुराक) करने की आवश्यकता होती है। इस प्रकार, रासायनिक खुराक पंपों की पर्याप्त खुराक क्षमता लगातार परिचालन मोड में होने की आवश्यकता है।

लेखापरीक्षा ने देखा कि शून्य खुराक दिनों के 26 प्रतिशत (6,127 दिनों में से 1,597) में रसायनों की कोई खुराक नहीं थी, भले ही मुंबई हाई प्लेटफार्मों में रसायन उपलब्ध था और हीरा में, शून्य खपत के 106 दिनों में से 50 दिनों में, स्टॉक उपलब्ध था लेकिन

खुराक नहीं दी गई। हालांकि, इंजेक्शन पंप की स्थिति को हमेशा ऑपरेटिव मोड के रूप में दिखाया गया था। इसके अलावा, सभी इंजेक्शन पंपों की सिस्टम उपलब्धता को 100 प्रतिशत के रूप में दिखाया गया था, भले ही बड़ी संख्या में, रसायनों की वास्तविक खुराक प्लेटफॉर्म पर उपलब्ध स्टॉक के बावजूद अनुशंसित खुराक से कम थी (ऊपर वर्णित शून्य खुराक मामलों को छोड़कर 38 प्रतिशत)। यह

प्रबंधन द्वारा स्वीकार किया गया कि खुराक की कमी (रसायनों की अनुपलब्धता और खुराक पंप मुद्दों) के कारण था। लेखापरीक्षा का विचार है कि 'प्रणाली उपलब्धता' की परिभाषा की समीक्षा की आवश्यकता है।

दिनवार आँकड़ों के अभाव में, लेखापरीक्षा को प्रस्तुत माह-वार रासायनिक इंजेक्शन पम्प डाटा पर विश्वास नहीं किया जा सकता था।

प्रबंधन ने कहा (अगस्त 2019) कि छोटे पंप होने के कारण, पंपों के चलने के घंटों की निगरानी एसएपी में नहीं की जाती है और इसलिए इन पंपों की उपकरण उपलब्धता को

सत्यापित नहीं किया जा सकता है। प्रबंधन/मंत्रालय ने आगे कहा (फरवरी/जून 2021) कि रासायनिक डोजिंग पंपों के चलने के घंटे अब प्लेटफॉर्म पर अनुरक्षित किए जाते हैं और प्रत्येक डोजिंग पंप के लिए घंटे मीटर स्थापित करने और उन्हें वितरित नियंत्रण प्रणाली (डीसीएस)/एसएपी सिस्टम में लॉगिंग करने की व्यवहार्यता का पता लगाया जाएगा।

अनुशंसा संख्या 10

कंपनी को भविष्य में निगरानी और समय पर सुधारात्मक कार्रवाई के लिए रासायनिक इंजेक्शन प्रणाली के प्रणाली और उपकरण उपलब्धता के डेटा को ठीक से बनाए रखने की आवश्यकता है।

5.6 वेलहेड पर जल की गुणवत्ता का मापन न होना

जल की गुणवत्ता को वाटर इंजेक्शन प्लेटफॉर्म पर मापा जाता है जहां से इसे भेजा जाता है और जलाशय में डाले गए जल की गुणवत्ता के रूप में रिपोर्ट किया जाता है। वाटर इंजेक्शन प्लेटफॉर्म से, उपचारित जल पाइपलाइनों के माध्यम से विभिन्न वेलहेडों तक जाता है जहां से इसे विभिन्न वॉटर इंजेक्शन कुओं/स्ट्रिंग्स के माध्यम से जलाशय में अंतःक्षिप्त किया जाता है।जल की इंजेक्शन लाइनों में क्षरण के कारण जलाशय तक पहुंचने से पहले जल की गुणवत्ता और खराब हो जाती है। इस प्रकार, जलाशय में डाले गए जल की वास्तविक गुणवत्ता वॉटर इंजेक्शन प्लेटफॉर्म पर मापी गई और रिपोर्ट की गई गुणवत्ता से कम थी। इसके कारण वेलबोर प्लगिंग हो गया है और इंजेक्शन कुओं/धाराओं की अंतःक्षिप्तता में कमी आई है और अंततः नियोजित वॉटर इंजेक्शन कार्यक्रम प्रभावित हुआ है।

विभिन्न आंतरिक समितियों, ओएनजीसी संस्थानों - इंस्टिट्यूट ऑफ़ रिजर्वयर स्टडीज़ (जलाशय अध्ययन संस्थान) और इंस्टिट्यूट ऑफ़ ऑयल एंड गैस प्रोडक्शन टेक्नोलॉजी (तेल और गैस उत्पादन प्रौद्योगिकी संस्थान) ने अपनी अध्ययन रिपोर्ट में वेलहेड पर गुणवत्ता मानकों को मापने की सिफारिश की। इन अध्ययन रिपोर्टों की टिप्पणियों और सिफारिशों का सारांश अनुलग्नक-XI में दिया गया है। लेखापरीक्षा ने देखा कि फरवरी 1984 में क्षेत्रीय रासायनिक प्रयोगशाला (आरजीएल) द्वारा जारी किए गए और इंस्टिट्यूट ऑफ़ रिजर्वयर स्टडीज़ (जलाशय अध्ययन संस्थान) (मार्च 1994 और मार्च 2011), आंतरिक समिति (जुलाई 2012) और इंस्टीट्यूट ऑफ ऑयल एंड गैस प्रोडक्शन टेक्नोलॉजी (अगस्त 2014) द्वारा दोहराए गए वेलहेड पर सभी जल गुणवत्ता मानकों को मापने के

लिए विशिष्ट दिशानिर्देशों के बावजूद , इसे नियमित रूप से मापा नहीं जाता है और वेलहेड एंड पर रिपोर्ट किया जाता है।

लेखापरीक्षा ने एक वर्ष (2017-18) के लिए वॉटर इंजेक्शन प्लेटफार्मी और वेलहेडों पर मापे गए जल की गुणवत्ता की तुलना की और विवरण अनुलग्नक-XII में दिया गया है। अनुलग्नक से यह देखा जा सकता है कि जल के इंजेक्शन प्लेटफॉर्म से वेलहेड तक जल की गुणवत्ता में काफी गिरावट आई थी। मुंबई हाई प्लेटफॉर्म में औसत लौह सामग्री और मैलापन वॉटर इंजेक्शन प्लेटफॉर्म से वेलहेड तक क्रमशः 30.24 गुना और 25.42 गुना तक बढ़ गया। उच्च कण संख्या और मैलापन माप के साथ इंजेक्शन जल गठन को तेजी से प्लग करने के लिए अधिक प्रवण है। यह वॉटर इंजेक्शन पाइपलाइन नेटवर्क में क्षरण की गंभीरता के कारण क्षरण से निपटने के लिए इस्तेमाल किए जाने वाले रसायनों की अप्रभावीता को दर्शाता है।

नीलम और हीरा के मामले में, मानव रहित प्लेटफार्मों में नमूनों को रिकॉर्ड करने के लिए कोई नियोजित आवधिकता नहीं थी और कवरेज सभी प्लेटफार्मों के लिए नहीं था। इंस्टीट्यूट ऑफ इंजीनियरिंग एंड ओसियन टेक्नोलॉजी (आईईओटी) ने अपनी रिपोर्ट में देखा (अक्टूबर 2012) कि मानव रहित प्लेटफॉर्म रीडिंग से कोई निष्कर्ष निकालना समझदारी नहीं हो सकती है क्योंकि जल की ग्णवत्ता का व्यवस्थित और पर्याप्त डेटा उपलब्ध नहीं है। मानव रहित प्लेटफॉर्म पर जलाशय में डाले गए जल की ग्णवत्ता की निगरानी में अभी तक सुधार नहीं ह्आ था (मार्च 2019)। रसायन विश्लेषण में भी मुंबई हाई में कवर किए गए सभी जल इंजेक्टेड ग्णवत्ता मानकों को शामिल नहीं किया गया था (उदाहरण के लिए, हीरा के मामले में सामान्य एरोबिक बैक्टीरिया/सल्फेट कम करने वाले बैक्टीरिया को कवर नहीं किया गया था)। कुओं से बैक वाश/बैक फ्लो के नमूने नहीं लिए जा रहे थे। हीरा के मानव रहित प्लेटफार्मीं में, वर्ष 2014-15 से 2018-19 के दौरान केवल पांच दिनों में कणों की संख्या की सूचना दी गई थी और इन सभी पांच दिनों में, यह 2,000 यूनिट / एमएल (2,855 से 4,818 तक) की स्वीकृत सीमा के भीतर नहीं थी। नीलम में, जहां मानव रहित प्लेटफॉर्म डेटा (222 मामले) रिपोर्ट किया गया था, 218 मामलों में मैलापन सीमा के भीतर बनाए नहीं रखा गया था, 177 मामलों में कण गणना निर्धारित सीमा के भीतर नहीं थी; 222 मामलों में से 211 में मिलिपोर और कुल सस्पेंडेड ठोस निर्धारित नहीं किए गए थे। हीरा के मामले में, मुख्य इंजेक्शन पंप छोर से मानव रहित प्लेटफॉर्म तक 11.54 गुना तक मैलापन बिगइ गया।

अपने अध्ययन में, इंस्टिट्यूट ऑफ़ रिजर्वयर स्टडीज़ (जलाशय अध्ययन संस्थान) ने कहा (मार्च 1994) कि "....अगर कुओं में इंजेक्शन के जल में लोहे की उच्च सांद्रता की निरंतर उपस्थिति से संकेत मिलता है कि इंजेक्शन के जल को ले जाने वाला पाइपलाइन नेटवर्क गंभीर रूप से खराब हो गया है। एक बार जब पाइपलाइन गंभीर रूप से खराब हो जाती है तो क्षरण अवरोधक की प्रभावशीलता की संभावना काफी कम हो जाती है"।

प्रबंधन ने कहा (जनवरी 2020) कि जब भी आवश्यकता होती है, मानव रहित प्लेटफार्मी पर गुणवत्ता की निगरानी की जाती है और जल की इंजेक्शन लाइनों की नियमित पिगिंग, कुओं के बैकवाश के साथ-साथ मानव रहित प्लेटफॉर्म पर विभिन्न गुणवत्ता मानकों की आंतरायिक निगरानी के माध्यम से गुणवत्ता बनाए रखने के लिए सभी प्रयास किए जाते हैं। प्रबंधन ने आगे कहा कि नीलम और हीरा में वेलहेड प्लेटफार्मी पर गुणवत्ता को लॉजिस्टिक/जनशक्ति बाधाओं के कारण तिमाही में एक बार मैन्युअल रूप से मापा जाता है, भले ही इसे महीने में एक बार जांचना हो और वर्तमान में ऑनलाइन पैरामीटर प्राप्त करने के लिए एससीएडीए/डीसीएस में कोई प्रावधान नहीं है। प्रबंधन ने स्वीकार किया कि परिपक्व क्षेत्रों में होने वाली अनियोजित/अप्रत्याशित प्रक्रिया अपसेट या शटडाउन में भाग लेने के लिए लॉजिस्टिक बाधाओं और जनशक्ति के विचलन के कारण नियमित आधार पर वेलहेड इंड पर इंजेक्शन जल के मापदंडों की निगरानी करना मृश्किल है।

प्रतिक्रिया ने सभी वेलहेडों पर नियमित रूप से (साप्ताहिक/मासिक) जल की गुणवत्ता मापदंडों को मापने और वेलहेडों के रास्ते में जल की गुणवत्ता में गिरावट के कारणों की पहचान करने के लिए विभिन्न संस्थानों/इन-हाउस समितियों द्वारा प्रलेखित दिशानिर्देशों/अनुशंसाओं से विचलन की व्याख्या नहीं की। कंपनी को समय पर सुधारात्मक कार्रवाई के लिए जलाशय में डाले गए जल की गुणवत्ता की निगरानी के लिए अनुशंसित आविधकता के अनुसार सभी वेलहेडों पर जल की गुणवत्ता के मापदंडों को मापने की आवश्यकता है।

प्रबंधन/मंत्रालय ने कहा (फरवरी/जून 2021) कि पिछले छह महीनों में मानव रहित प्लेटफॉर्मों के सैंपलिंग कवरेज को बढ़ाया गया है और पहले की तरह केवल अंतिम बिंदुओं पर नमूना लेने के बजाय अलग-अलग प्लेटफॉर्म पर सैंपलिंग की जाती है। प्रबंधन ने आश्वासन दिया कि वेल हेड प्लेटफॉर्म पर जल की गुणवत्ता के मानकों की निगरानी एसओपी/अनुशंसित आवधिकता के अनुसार सुनिश्चित की जाएगी। सामान्य एरोबिक

बैक्टीरिया/सल्फेट कम करने वाले बैक्टीरिया का विश्लेषण वेल हेड प्लेटफॉर्म (हीरा) पर शुरू किया गया है।

अन्शंसा संख्या 11

जलाशय में इंजेक्ट किए गए जल की आवश्यक गुणवत्ता की निगरानी पूरे जल के इंजेक्शन प्रक्रिया के दौरान की जानी चाहिए और सभी मापदंडों के लिए वेल हेड एंड तक स्निश्चित की जानी चाहिए।

5.7 संक्षेप

लेखापरीक्षा ने कंपनी द्वारा अपनाए गए गुणवत्ता मानकों की तुलना में इंजेक्ट किए गए जल की गुणवत्ता को बनाए रखने और अपने स्वयं के स्वीकृत गुणवत्ता मानकों के डाउनग्रेडिंग में अंतराल देखा। लेखापरीक्षा ने आंतरिक एजेंसियों द्वारा अनुशंसित सुधारात्मक कार्रवाइयों के अनुपालन को सुनिश्चित करने में जल की गुणवत्ता के मानकों की गलत रिपोर्टिंग और नियंत्रण के निरंतर अंतराल को भी देखा। आवश्यक स्तर पर रसायनों की खुराक न देकर गुणवत्ता मानकों का पालन न करने के साथ-साथ उपकरणों की अनुपलब्धता उत्पादन और जलाशय के स्वास्थ्य को बढ़ाने के प्रयासों पर गंभीर चिंता का विषय है। इस प्रकार, जलाशयों में जल की वांछित गुणवत्ता का अंतःक्षेपण नहीं किया गया था।

जल इंजेक्शन कुआं

अध्याय 6

वॉटर इंजेक्शन लाइनों और इंजेक्टरों का रखरखाव

अभीष्ट प्रवाह अनुसार जल के इंजेक्शन की निरतंरता बनाए रखने के लिए,जल की इंजेक्शन लाइनों और इंजेक्टरों के स्वास्थ्य को बनाए रखने और निगरानी करने की आवश्यकता है। जैसा कि पहले के अध्यायों में चर्चा की गई है, इंजेक्शन वाले जल के गुणवत्ता मानकों को पूरा करने में विफलता और पुराने उपकरणों के कारण जंग लगने का खतरा वास्तविक है। लाइनों के क्षरण और कुओं/ स्टींग्स की अंतःक्षिप्तता में हानि से बचने के लिए, समय पर रखरखाव की आवश्यकता होती है। इंजेक्शन लाइनों और इंजेक्टर के रखरखाव और निगरानी क्रियायों में निम्नलिखित गतिविधियां शामिल हैं:

अ) इंजेक्शन लाइनों का रखरखाव और निगरानी:

- इंजेक्शन जल की गुणवत्ता बनाए रखने के लिए प्रक्रिया प्लेटफार्मी पर रासायनिक इंजेक्शन
- मुख्य इंजेक्शन पंप आउटलेट और संबंधित वॉटर इंजेक्शन पाइपलाइन खंडो में इंजेक्शन जल की संक्षारण की निगरानी
- जंग और प्रवाह मापदंडों,पाइपलाइनों के बाहरी स्वास्थ्य मूल्यांकन के आधार पर इंजेक्शन लाइनों की पिगिंग²⁵ दवारा वॉटर इंजेक्शन पाइपलाइनों का रखरखाव।
- आंतरिक संसाधनों का उपयोग करके पाइपलाइनों की आवश्यकता आधारित

 मरम्मत
- प्रतिस्थापन नीतिआवश्यकता के आधार पर पाइपलाइनों का आविधक प्रतिस्थापन।/

(आ) इंजेक्टर स्वास्थ्य रखरखाव:

- रिग इंटरवेंशन द्वारा इंजेक्टर कुओं का वर्कओवर।
- इंजेक्शन क्षमता बढ़ाने के लिए वेल स्टिम्लेशन²⁶ जॉब।

²⁵ पिगिगन्ग एक छोटा, गोलाकार या डिस्क उपकरण है जिसका उपयोग प्रवाह रेखा को साफ करने के लिए किया जाता है। पाइपलाइन की सफाई (कमीशनिंग, मलबे की सफाई), लाइन प्रबंधन (तरल हटाने, जंग अवरोधक फैलाव और मोम हटाने), और लाइन निरीक्षण के लिए पिगिंग किया जाता है।

²⁶ कुएं का स्टिमुलेशन जलाशय में पानी के प्रवाह को बढ़ाने के लिए जल के कुएं का इंजेक्शन एक अच्छा हस्तक्षेप है

2021 की प्रतिवेदन संख्या 19

• इंजेक्शन क्षमता में सुधार के लिए इंजेक्टरों का नियमित बैकवाश²⁷ लेखापरीक्षा ने 2014-15 से 2018-19 के दौरान पाइपलाइनों और इंजेक्टरों की अनुरक्षण गतिविधियों की जांच की और उन कमियों को देखा जो नियोजित वॉटर इंजेक्शन संचालन और कच्चे तेल के उत्पादन/रिकवरी को प्रभावित करती थीं। इन कमियों की चर्चा आगे के अनुच्छेद में की गई है।

6.1 संक्षारण निगरानी

संक्षारण निगरानी कार्यक्रम संक्षारण नियंत्रण में महत्वपूर्ण भूमिका निभाता है। कंपनी का अपतटीय पाइपलाइन समूह रैखिक ध्रुवीकरण प्रतिरोध जांच के माध्यम से संक्षारण निगरानी अध्ययन करता है। वॉटर इंजेक्शन पाइपलाइनों के क्षरण की सुरक्षित सीमा <2 मिलियन प्रति वर्ष एमपीवाई ²⁸ है। 5 एमपीवाई से ऊपर के क्षरण को हाई माना जाता है और 10 एमपीवाई से ऊपर को गंभीर माना जाता है। वॉटर इंजेक्शन लाइनों की क्षरण निगरानी का काम तीसरे पक्ष (संक्षारण टेक्नालॉजिस्ट) को सौंपा गया था जो निर्दिष्ट पाइपलाइन स्थान पर क्षरण दरों की निगरानी करता है।

लेखापरीक्षा ने मुंबई हाई क्षेत्र के लिए 45 प्रतिशत रैखिक ध्रुवीकरण प्रतिरोध जांच अध्ययन रिपोर्ट (582 अध्ययनों में से 261) और नीलम और हीरा क्षेत्र के लिए 100 प्रतिशत अध्ययन रिपोर्ट (68 अध्ययन) की जांच की, जो 2014-15 से 2018-19 के दौरान तीसरे पक्ष द्वारा आयोजित की गई थी- लेखापरीक्षा ने देखा कि जांच की गई सभी अध्ययन रिपोर्टों में, संक्षारण दर <2 एमपीवाई की सुरक्षित सीमा से ऊपर थी। रैखिक ध्रुवीकरण प्रतिरोध जांच अध्ययनों की औसत संक्षारण दर तालिका 6.1 में दी गई है।

²⁷ बैकवाशिंग वॉटर इंजेक्टर वेलबोर के निकट की क्षति को दूर करने और खोई हुई इंजेक्शन की एक महत्वपूर्ण मात्रा को सुधार करने की एक विधि है

²⁸ मिल्स प्रति वर्ष एक पाइप, एक पाइप सिस्टम या अन्य धातु सतहों में क्षरण दर देने के लिए उपयोग किया जाता है। इसका उपयोग धातु की सतहों के भौतिक नुकसान या वजन घटाने की गणना के लिए किया जाता है (मिल्स एक इंच का 1000वां हिस्सा है)।

तलिका 6.1 इंजेक्शन लाइनों की औसत क्षरण दर

क्षेत्र	प्लेटफॉर्म	एलपीआर जांच	औसत संक्षारण	दर (एमपीवाई)
		(संख्या)	न्यूनतम	उच्चतम
म्ंबई हाई	वॉटर इंजेक्शन नॉर्थ	15	3.57	5.73
3,44 (44	वॉटर इंजेक्शन साउथ	57	5.14	8.24
	इन्फिल कॉम्प्लेक्स वाटर इंजेक्शन	56	4.25	6.55
	साउथ हाई वॉटर इंजेक्शन	37	5.03	8.16
	मुंबई नॉर्थ वॉटर इंजेक्शन	96	3.72	5.55
नीलम	नीलम	20	1.69	10.76
और हीरा	हीरा	48	4.32	6.61

एलपीआर: रैखिक ध्वीकरण प्रतिरोध

स्रोतः तीसरे पक्ष की जांच रिपोर्ट की रिपोर्ट

जैसा कि आंतरिक समितियों²⁹ और जंग टैकनोलजिस्ट द्वारा रिपोर्ट किया गया है, ऑक्सीजन स्कॅवेंजर किया और अन्य रसायनों की कम खुराक ने जल के इंजेक्शन नेटवर्क को तेज दर से क्षरण में योगदान किया।

इसके अलावा, लेखापरीक्षा ने देखा कि अधिकांश रैखिक ध्रुवीकरण प्रतिरोध जांचों का स्थान मुख्य इंजेक्शन पंप के अंत में था। एक स्वतंत्र जांच-विश्लेषण करने का उद्देश्य उस बिंदु के इतना करीब है, जहां इसकी आंतरिक रूप से निगरानी की जाती है, (मुख्य इंजेक्शन पंप अंत) यह स्पष्ट नहीं है। रैखिक ध्रुवीकरण प्रतिरोध जांच एक सीमित दूरी तक जल संक्षारण अवरोधक रासायनिक और अन्य जंग से संबंधित मापदंडों के निष्पादन / दक्षता का आकलन कर सकती है। यह बेहतर होगा यदि इसे केवल मुख्य इंजेक्शन पंप के अंत के बजाय कई स्थानों पर लिया जाए।

प्रबंधन/मंत्रालय (फरवरी/जून 2021) ने बताया कि इंजेक्शन जल पाइपलाइन क्षेत्र में प्रतिनिधि चुनिंदा स्थानों पर क्षरण की निगरानी की जाती है; हालांकि, जैसा कि लेखापरीक्षा द्वारा सुझाया गया है, भविष्य के अनुबंधों में अधिक स्थानों को लिया जाएगा।

अनुशंसा संख्या 12

बड़ी संख्या में लाइनों की समयपूर्व विफलता को ध्यान में रखते हुए, कंपनी क्षरण निगरानी प्रणाली को तत्काल मजबूत कर सकती है। भविष्य में जंग की निगरानी के लिए मुख्य इंजेक्शन पंपों से दूर के और स्थानों को भी लिया जाना चाहिए।

²⁹ मुंबई हाई की जल गुणवत्ता और इंजेक्शन मूल्यांकन पर आईआरएस रिपोर्ट। (2011), इंस्टीट्यूट ऑफ ऑयल एंड गैस प्रोडक्शन टेक्नोलॉजी (2012), जल इंजेक्शन लाइनों की समयपूर्व विफलता (अगस्त 2014), की इन-हाउस कमेटी

6.2 वॉटर इंजेक्शन लाइनों की पिगिंग

पिगिंग पाइपलाइनों में जमा मलबे को हटाने में मदद करता है और रोगाणुओं के नियंत्रण और पाइपलाइन अखंडता की निगरानी के लिए सबसे प्रभावी और किफायती तरीकों में से एक है। नवंबर 2016 की कंपनी की मानक संचालन प्रक्रिया (एसओपी) के अनुसार, पाइपलाइनों को समय-समय पर पिगिंग की आवश्यकता होती है। पिगिंग के लिए वार्षिक कार्यभार का आकलन दिए गए इनपुट जैसे पिगिंग आवृत्ति, पाइपलाइनों की उपलब्धता, प्रवाह विशेषताओं, द्रव संरचना आदि के आधार पर किया जाता है। पाइपलाइन समूह ओआईएसडी कोड/निरीक्षण और रिपोर्ट आवश्यकता और कम्पनी की एसओपी के अनुसार पिगिंग आवृत्ति के आधार पर वार्षिक पिगिंग योजना तैयार करता है। वार्षिक पिगिंग योजना की तुलना में पिगिंग संचालन में पर्याप्त कमी थी जैसा कि तालिका 6.2 से देखा जा सकता है।

तालिका 6.2: पिगिंग योजना बनाम वास्तविक

		मुंबई हाई		नीलम और हीरा			
वर्ष	स्वीकृत कार्यभार (सं.)	वास्तविक पिगिंग (सं।)	पिगिंग हासिल बनाम स्वीकृत (<i>प्रतिशत</i>)	स्वीकृत कार्यभार (सं.)	वास्तविक पिगिंग (संख्या)	पिगिंग हासिल बनाम स्वीकृत (<i>प्रतिशत</i>)	
2014-15	326	83	25	104	66	63	
2015-16	344	101	29	88	75	85	
2016-17	405	61	15	72	47	65	
2017-18	386	73	19	72	43	60	
2018-19	460	148	32	72	79	110	
कुल	1,921	466	24	408	310	76	
स्रोत: कंपनी द्व	ारा प्रस्तुत डेटा						

तालिका 6.2 से आगे यह देखा गया है कि वास्तविक उपलब्धि स्वीकृत कार्यभार का केवल 24 प्रतिशत (मुंबई हाई क्षेत्र) और 76 प्रतिशत (नीलम और हीरा क्षेत्र) थी।

कंपनी का एसओपी आयरन काउंट, सल्फेट रिड्यूसिंग बैक्टीरिया, टोटल सस्पेंडेड सॉलिड और गंदगी के विश्लेषण के लिए फ्लिशंग पूरा करने के बाद सैंपल लेने के लिए निर्धारित है। एसओपी ने लाइन की फ्लिशंग जारी रखने और मिलिपोर दर की जांच करने के लिए भी निर्धारित किया। जल का इंजेक्शन तभी फिर से शुरू होता है जब मिलिपोर³⁰ स्तर हासिल कर लिया जाता है।

इस संबंध में, लेखापरीक्षा ने निम्नलिखित पाया:

6.2.1 मुंबई हाई फील्ड

- 981 वास्तविक पिग रन के मुकाबले, केवल 246 पिग रन में नमूने रिपोर्ट किए गए थे। 246 नमूनों में से, 235 मामलों (95.52 प्रतिशत) में मिलिपोर परीक्षण के परिणाम रिपोर्ट नहीं किए गए थे और इस प्रकार, उस सीमा तक पिगिंग की उपयोगिता कम हो गई थी। मिलिपोर परीक्षण को मंजूरी दिए बिना जल के इंजेक्शन को फिर से शुरू करना एसओपी से विचलन था।
- किसी भी नमूने में, आयरन काउंट और कुल निलंबित ठोस आवश्यक गुणवत्ता मानकों के भीतर नहीं थे और केवल एक नमूने में मैलापन सीमा के भीतर था।
- 161 नम्नों में सल्फेट कम करने वाले बैक्टीरिया देखे गए और 33 नम्नों में इसे 'निगरानी में' दिखाया गया और 25 में इसे खाली रखा गया।

6.2.2 नीलम-हीरा फील्ड

- 310 पिग रन की तुलना में केवल 129 पिग के नमूनों की सूचना दी गई। (41. प्रतिशत)
- हीरा में 83 में से 34 नमूनों में और नीलम में 48 में से 35 मामलों में सल्फेट कम करने वाले बैक्टीरिया पाए गए।
- हीरा में 49 मामलों को रिक्त डेटा के साथ/'अध्ययनाधीन' के रूप में दर्शाया गया
 और 13 ऐसे मामले नीलम में देखे गए।
- हीरा में 83 में से 67 और नीलम में 48 में से 37 पिग के नमूनों में सामान्य एरोबिक बैक्टीरिया की उपस्थिति पाई गई।
- नीलम में, सभी दर्ज मामले (40) में आयरन की मात्रा 0.05 पीपीएम के वांछित स्तर से अधिक पाई गई। हीरा फील्ड ने पिग के नमूने में आयरन तत्व का विश्लेषण नहीं किया।

प्रबंधन ने कहा (मार्च/अप्रैल 2020) कि योजना के विरूद्ध पिगिंग संचालन की कम संख्या मुख्य रूप से सेवा ठेकेदार के व्यवधान/गैर-निष्पादन (2016-17 में चार महीने), एक वर्ष से अधिक के लिए पिगिंग अनुबंध की अनुपलब्धता और जनशक्ति (रसायनज्ञ) की बाधाओं

³⁰ इंजेक्शन पंप और इंजेक्शन कुओं से पहले फिल्टर से पहले और बाद में निलंबित ठौस पदार्थों की उपस्थिति का विश्लेषण करने के लिए मिलिपोर परीक्षण उपचारित पानी की गुणवत्ता जांच है। 6 लीटर/30 मिनट से अधिक प्रवाह की मिलीपोर दर को एक स्वीकार्य पैरामीटर माना जाता है

2021 की प्रतिवेदन संख्या 19

के कारण थी । यह भी कहा गया था कि भविष्य में मिलिपोर परीक्षण की रिपोर्टिंग सुनिश्चित की जाएगी और उच्च लोहे की गिनती और कुल निलंबित ठोस कम संक्षारण अवरोधक खुराक का संचयी प्रभाव हो सकता है, कभी-कभी डी-ऑक्सीजनेशन टावरों की खराबी के कारण विघटित ऑक्सीजन प्रवेश कर सकता है । प्रबंधन ने आगे कहा कि जंग अवरोधक की इष्टतम खुराक के लिए प्रयास किए जा रहे हैं और तीन प्रकार के जीवाणुनाशकों का वैकल्पिक रूप से उपयोग करके स्टेरिलाईट के माध्यम से सल्फेट कम करने वाले बैक्टीरिया की गिनती 'शून्य' के रूप में रखने के लिए और भविष्य में, आयरन सामग्री विश्लेषण के परिणाम हीरा में मासिक प्रगति रिपोर्ट के भाग के रूप में दर्ज किए जाएंगे। प्रबंधन/मंत्रालय ने आगे बताया (फरवरी/जून 2021) कि पिगिंग का ठेका हो जाने से सभी पाइपलाइनों को उनकी निर्धारित आवृत्ति के अनुसार पिग करने का प्रयास किया जा रहा है और पोस्ट पिगिंग के नमूनों का संग्रह और विश्लेषण एसओपी के अनुसार किया जा रहा है और भविष्य में भी स्निश्चित किया जाएगा।

उत्तर को इस तथ्य के आलोक में देखे जाने की आवश्यकता है कि (i) जल के इंजेक्शन पर पिछली इन-हाउस रिपोर्टों में की गई आवधिक पिगिंग और नमूना विश्लेषण के लिए सिफारिशों पर विचार नहीं किया गया था, (ii) हालांकि कंपनी के एसओपी का विश्लेषण के लिए उल्लेख किया गया था पिगिंग के बाद प्रत्येक लाइन के लिए पिगिंग के बाद के नमूने, आवश्यकता के अनुसार लाइनों की पिगिंग करने में पर्याप्त कमी है, अपर्याप्त नमूना विश्लेषण, जलाशय में इंजेक्ट किए गए जल की गुणवत्ता की विशिष्टता नहीं है। प्रतीक्षित/अनुपलब्ध मामलों के प्रयोगशाला परिणामों पर उत्तर मौन है।

अन्शंसा संख्या 13

कंपनी को पाइपलाइनों के स्वास्थ्य को सुनिश्चित करने और इसके तेजी से क्षरण को रोकने के लिए लाइनों की पिगिंग की परिभाषित आवृत्ति का पालन करना चाहिए। कंपनी को प्रत्येक पिग दौड़ पर नमूने लेकर एसओपी के अनुसार सख्ती से पिगिंग ऑपरेशन का पालन करना चाहिए और सुधारात्मक कार्यों के लिए आवश्यक गुणवत्ता मानकों और माइक्रोबियल विकास के लिए उनका विश्लेषण करना चाहिए।

6.3 वॉटर इंजेक्शन लाइनों की समयपूर्व विफलता

इन-हाउस समितियों³¹, अंतर्राष्ट्रीय सलाहकारों और कंपनी के अनुसंधान संस्थानों (1994 से 2018) ने जल की खराब गुणवत्ता, लाइनों की अपर्याप्त पिगिंग और लाइनों के कम/स्थिर वेग के कारण वॉटर इंजेक्शन लाइनों के त्वरित क्षरण पर चिंता व्यक्त की थी और उपचारात्मक गुणवत्ता मानकों के भीतर जल की गुणवत्ता को बहाल करने के लिए, पिगिंग की आवृत्ति में वृद्धि, आदि उपायों की अनुशंषा की थी। आंतरिक समिति ने निष्कर्ष निकाला था कि आंतरिक क्षरण लाइनों की समयपूर्व विफलता का प्राथमिक कारण था।

क्षरण के मुद्दों को कम करने के बजाय, लेखापरीक्षा ने देखा कि कंपनी ने वॉटर इंजेक्शन लाइनों के डिजाइन सर्विस लाईफ को 25 से घटाकर 15 वर्ष कर दिया (अक्टूबर 2003)। यह आंतरिक क्षरण के कारण बड़ी संख्या में लाइनों की विफलता के कारण किया गया था। 2014-15 से 2018-19 के दौरान बदली गई पाइपलाइनों की समीक्षा से पता चला कि ऊपर बताए गए मुद्दों के कारण 15 वर्षों की संशोधित डिज़ाइन सर्विस लाईफ प्राप्त करने से बह्त पहले ही लाइनों की संख्या विफल हो गई थी। इसके अलावा, 2014-15 से 2018-19 के दौरान, मुंबई हाई में 44 लाइनों के 85 रिसाव और नीलम और हीरा क्षेत्रों में आठ लाइनों के लिए काम हुआ । लीकेज की तारीख और लाइनों की मरम्मत/प्रतिस्थापन की तारीख के बीच के समय के अंतराल को ध्यान में रखते हुए, जल इंजेक्शन का काफी नुकसान हुआ है। मार्च 2019 तक, मुंबई हाई में 48 कुएं (60 स्टींग्स) और नीलम और हीरा में आठ क्एं लाइन लीकेज के कारण बंद हो गए थे। नीलम के WN1 प्लेटफॉर्म में, 2011 से निलंबित इंजेक्शन को फिर से शुरू नहीं किया जा सका, जबकि लीकेज लाइन के लंबित प्रतिस्थापन के कारण नीलम वाटर इंजेक्शन (NLW)-WN2 को जोड़ने के लिए एक नई इंजेक्शन लाइन चालू कर दी गई थी। WN2-WN1 लाइन को बाद में 2018 में पाइपलाइन रिप्लेसमेंट प्रोजेक्ट्स (PRP)-V में बदल दिया गया। मुंबई हाई में जल के इंजेक्शन के संवर्धन और वितरण के लिए नियुक्त समिति ने भी दोहराया (अक्टूबर 2018) कि इंजेक्शन जल को बनाए रखने से लगास्ट्रिंग्स रिसाव को अन्शंसित मापदंडों के अनुसार गुणवत्ता और उपकरणों के निवारक रखरखाव से कम किया जा सकता है।

³¹ कैप्रोको इंटरनेशनल (1998), इन-हाउस समितियां (2012, 2014)

प्रबंधन ने कहा (अप्रैल 2020) कि पाइपलाइनों की विफलता मुख्य रूप से एक सेक्टर में कम प्रवाह दर के कारण होती है और जब कुओं को जलाशय की निगरानी के लिए बंद कर दिया गया था। प्रबंधन ने स्वीकार किया कि लाइन लीकेज के कारण लिक्विड डिलिवरेबिलिटी और प्रेशर ड्रॉप में कमी आई है। यह भी कहा गया था कि नीलम और हीरा के क्षेत्रों की अधिकतम वॉटर इंजेक्शन लाइनें अब इसकी जंग प्रतिरोध संपत्ति और कम रखरखाव को देखते हुए कोफ्लेक्स³² लाइनें हैं। प्रबंधन/मंत्रालय ने आगे कहा (फरवरी/जून 2021) कि पोस्ट पिगिंग नमूनों का संग्रह और विश्लेषण एसओपी के अनुसार किया जा रहा है और भविष्य में भी स्निश्चित किया जाएगा।

प्रतिक्रिया को आंतरिक समितियों/अंतर्राष्ट्रीय सलाहकारों की सिफारिशों के अपर्याप्त कार्यान्वयन और इंजेक्शन जल की गुणवत्ता बनाए रखने में विफलता के आलोक में देखा जाना चाहिए।

6.4 इंजेक्टरों का वर्कओवर

वर्कओवर या वेल सर्विसिंग किसी कुएं पर उसके निष्पादन को बहाल करने या सुधारने के लिए किया गया कोई भी ऑपरेशन है। एक बार कुएं में इंजेक्शन क्रिया शुरू हो जाने के बाद, अपने परिचालन जीवन के किसी चरण में, यह या तो गठन संबंधी या यांत्रिक समस्याओं या दोनों के कारण अपनी क्षमता से कम जल इंजेक्ट कर सकता है। इसलिए, इंजेक्शन कुएं को सतह सुविधाओं की मरम्मत या प्रतिस्थापन की आवश्यकता होती है। कंपनी के शोध संस्थान इंस्टीट्यूट ऑफ ऑयल एंड गैस प्रोडक्शन टेक्नोलॉजी (आईओजीपीटी) ने सुझाव दिया था कि पिछले वर्कओवर से 5, 8, 11 और 15 साल के अंतराल में समय-समय पर ट्यूबिंग की स्थिति की जांच की जानी चाहिए। मुंबई हाई फील्ड में, वर्कओवर के लिए नियोजित 123 कुओं के मुकाबले, यह केवल 61 कुओं (49.6 प्रतिशत) में किया गया था। विचलन/कमी का प्रमुख कारण रिगों की अनुपलब्धता था।

मुंबई हाई में वॉटर इंजेक्शन सुधार पर अध्ययन के लिए गठित आंतरिक समिति ने देखा (जुलाई 2012) कि कम वॉटर इंजेक्शन के कारणों में से एक कारण खराब कुएं की स्थिति है। समिति ने पाया कि बड़ी संख्या में जल के इंजेक्शन वाले कुओं में दस साल से अधिक पुराने ट्यूबलर थे और उन्हें सर्विसिंग की आवश्यकता थी। इस अविध के दौरान लगास्ट्रिंग्स जल के इंजेक्शन वाले इन कुओं में जंग लगने/ क्षतिग्रस्त ट्यूबिंग और केसिंग

³² एक लचीला पाइप कई परतों से बना एक विन्यास योग्य उत्पाद है। मुख्य घटक लीक प्रूफ थर्मोप्लास्टिक बैरियर और जंगप्रतिरोधी स्टील के स्ट्रिंग्स हैं

और वेलबोर की प्लगिंग के कारण इंजेक्शन की कमी होने का संदेह था और तत्काल सर्विसिंग की आवश्यकता थी। समिति ने कुओं की सफाई, टयूबिंग परिवर्तन, आवरण मरम्मत, गैस लिफ्ट स्थापना के लिए कुओं के प्रवाह की सुविधा के लिए वर्कओवर जॉब्स के लिए 104 कुओं की अनुशंषा की। यह अनुमान है कि इन 104 कुओं की सर्विसिंग से कुओं के इंजेक्शन में 117,000 बीडब्लयूपीडी की वृद्धि होगी।

कंपनी ने इन चिन्हित कुओं की सर्विसिंग के लिए वर्कओवर जॉब के लिए तीन साल के लिए दो समर्पित रिग किराए पर लिए (अप्रैल 2015)। केवल 62 प्रतिशत रिग दिनों का उपयोग वर्कओवर संचालन के लिए किया गया था जबिक रिग को शेष 821 दिनों के लिए कार्य प्राथमिकता के आधार पर अतिरिक्त ड्रिलिंग गतिविधियों के लिए मोइ दिया गया था। 2015-16 से 2017-18 की अविध के दौरान, चिन्हित किए गए 100 कुओं (समर्पित रिगों की तैनाती से पहले 4 कुओं की सर्विसिंग हो गई) में से केवल 23 को कवर किया जा सका, 77 कुओं को वर्कओवर के लिए लंबित छोड़ दिया गया। यह देखा गया कि वर्कओवर ऑपरेशन के बाद इन 23 कुओं में इंजेक्शन क्षमता में सुधार हुआ था। बाद की अविध के दौरान, शेष कुओं की सर्विसिंग के लिए अलग से कोई रिग किराए पर नहीं लिया गया था। यह इंगित करता है कि जलाशय के दबाव और तेल की अंतिम रिकवरी पर कम जल के इंजेक्शन के दीर्घकालिक प्रभाव की अनदेखी करते हुए तेल उत्पादन पर अधिक जोर दिया गया था।

प्रबंधन ने कहा (मार्च 2020) कि उपलब्ध रिग संसाधनों और कुओं की प्राथमिकता को ध्यान में रखते हुए वर्कओवर योजना तैयार की जाती है। प्रबंधन/मंत्रालय ने आगे कहा (फरवरी/जून 2021) कि जलाशय से संबंधित मुद्दों को संबंधित करने के लिए, विकास योजनाओं पर हस्तक्षेप के लिए कुओं की योजना बनाई गई है और सुरक्षा को संबंधित करने के लिए आवश्यकता के आधार पर अन्य रिग हस्तक्षेपों को प्राथमिकता दी जाती है। प्रबंधन के जवाब ने संकेत दिया कि वॉटर इंजेक्शन कुओं के लिए उचित महत्व नहीं दिया गया था। वॉटर इंजेक्शन कुओं के वर्कओवर के लिए किराए पर लिए गए समर्पित रिगों को अन्य कार्यों में बदल दिया गया था और इंजेक्शन क्षमता में सुधार के लिए बचे हुए कुओं की सर्विस करने की कोई योजना नहीं है। बाद की इन-हाउस कमेटी रिपोर्ट (अगस्त 2014) में कुओं की सर्विसिंग की आवश्यकता पर भी जोर दिया गया था, जिसमें कहा गया था कि "... कई जल इंजेक्टर कुएं/ स्ट्रिंग्स जो 20 साल से अधिक पुराने हैं और ट्यूबिंग रिसाव को ठीक करने के लिए वर्कओवर जॉब की आवश्यकता होती है और/या

प्रभावी वॉटर इंजेक्शन के लिए आवरण क्षति... कुएं के बोर को साफ रखने और इंजेक्शन को बनाए रखने के लिए बैकवाश, स्टिमुलेशन और वर्कओवर को नियमित रूप से अपनाया जाना चाहिए।

नीलम और हीरा फील्ड की वर्कओवर योजना लेखापरीक्षा को उपलब्ध नहीं कराई गई थी और इसलिए, लेखापरीक्षा यह सत्यापित करने में असमर्थ है कि वर्कओवर के लिए देय वॉटर इंजेक्शन कुओं पर ध्यान दिया गया था या नहीं। आईओजीपीटी ने वॉटर इंजेक्शन कुओं के वर्कओवर के बीच लंबे अंतराल पर टयूबिंग को नुकसान पहुंचाने और वर्कओवर लागत में वृद्धि पर टिप्पणी की थी (सितंबर 2016)। हीरा क्षेत्र में इंजेक्शन के तहत 63 कुओं में से 39 शुरू से ही एक बार भी काम नहीं किया गया था। इन 63 में से आठ कुएं 1991 से 2010 तक प्रचालन में हैं और 15-20 वर्षों के अंतराल के बाद कुओं पर काम किया गया। नीलम के क्षेत्र में 24 कुओं में से 11 पर काम नहीं हुआ है, जिनमें से नौ कुएँ 17 साल से अधिक पुराने हैं।

लेखापरीक्षा ने देखा कि आवरण क्षिति के कारण इंजेक्टर कुओं को स्थायी/अस्थायी रूप से बंद कर दिया गया था। हीरा में एक इंजेक्शन कुआं दिसंबर 2017 से कुंडलाकार वाल्व रिसाव के कारण बंद कर दिया गया था जिसके परिणामस्वरूप 12,000 बीडब्ल्यूपीडी का वॉटर इंजेक्शन कम हो गया था। केसिंग रिसाव एक गंभीर सुरक्षा समस्या है। तेल उद्योग सुरक्षा निदेशालय मैनुअल के अध्याय XVI में सुरक्षा नियम वेल बैरियर की विफलता के मामले में वेल बैरियर और सुधारात्मक कार्रवाई के लिए शर्तों को निर्धारित करते हैं। सुरक्षा नियमों का पालन न करने से गंभीर परिणाम हो सकते हैं। दो वर्कओवर जॉब्स और कुछ वॉटर इंजेक्शन कुओं के बीच बड़े अंतर को देखते हुए इसकी स्थापना के बाद से काम नहीं किया गया था, वॉटर इंजेक्शन कुओं के वर्कओवर / रखरखाव के लिए एक व्यापक नीति की आवश्यकता है।

प्रबंधन/मंत्रालय ने कहा (फरवरी/जून 2021) कि इंजेक्शन दर, दबाव दर्ज, सर्वेक्षण और अन्य जलाशय निदान भूखंडों/विश्लेषण किए गए अध्ययनों से नियमित निगरानी के परिणाम के आधार पर, वर्कओवर के लिए कुओं की योजना बनाई गई है। यदि जल के इंजेक्शन की वांछित मात्रा प्राप्त नहीं की जा सकती है / स्टिमुलेशन से हासिल नहीं की जाती है, तो वर्कओवर के लिए कुएं को शॉर्टलिस्ट किया जाता है। प्रबंधन/मंत्रालय ने आगे कहा कि इंजेक्शन कुओं के वर्कओवर के लिए एक कार्य योजना तैयार करने के लिए लेखापरीक्षा अनुशंसा को नोट किया गया था।

प्रबंधन के उत्तर को इस तथ्य के संदर्भ में देखे जाने की आवश्यकता है कि जल के इंजेक्शन वाले कुओं के वर्कओवर जॉब और नियोजित वर्कओवर जॉब की कमी के बीच 10-15 साल का लंबा अंतराल है।

अन्शंसा संख्या 14

कंपनी को इन वॉटर इंजेक्शन कुओं को समय पर ढंग से काम करने और तदनुसार कार्य योजना तैयार करने के लिए एक तंत्र स्थापित करने की आवश्यकता है। इससे कंपनी को जल के इंजेक्शन वाले कुओं को स्वस्थ स्थिति में रखने और अंततः तेल कुओं की उत्पादकता बढ़ाने के लिए जलाशय के दबाव को बनाए रखने के लक्ष्य को प्राप्त करने में मदद मिलेगी।

6.5 इंजेक्शन कुओं की स्टिमुलेशन जॉब

वेल स्टिम्लेशन³³ एक वेल इंटरवेंशन प्रक्रिया है जिसे अपनाया गया है क्योंकि वॉटर इंजेक्शन वाले क्ओं में स्केलिंग/माइक्रोबियल ग्रोथ/अवशिष्ट बायोमास और माइक्रोबियल प्रेरित क्षरण के साथ वेलबोर के प्लगिंग की संभावना होती। वांछित इंजेक्शन को बनाए रखने के लिए बार-बार स्टिम्लेशन जॉब्स की आवश्यकता होती है। अतीत में,उपलब्ध संसाधनों के आधार पर कंपनी में स्टिम्लेशन जॉब सख्ती से परिचालित होता था। एक आंतरिक समिति ने देखा (अगस्त 2014) कि अपर्याप्त स्टिम्लेशन कम जल के इंजेक्शन के कारणों में से एक है और अन्शंसित किया कि इंजेक्शन को बनाए रखने के लिए स्टिम्लेशन जॉब की प्रक्रियाओं को नियमित रूप से अपनाया जाना चाहिए। अंतर्राष्ट्रिय सलाहकार मेसर्स जीसीए द्वारा स्झाए गए अन्सार दो साल में एक बार वांछित आवृत्ति के प्रति स्टिमुलेशन की आवृत्ति 5.8 साल (मुंबई हाई) और 4.4 साल (नीलम और हीरा) में एक बार थी। कंपनी ने स्टिम्लेशन जॉब्स के अपने समस्या निवारण दृष्टिकोण की समीक्षा (2013) की और सलाहकार द्वारा अनुशंसित के रूप में इसे सर्वोत्तम उद्योग प्रथाओं के अन्रूप बनाने के लिए सक्रिय निवारक दृष्टिकोण रखने का निर्णय लिया। इसके आधार पर, दो साल में एक बार की आवृत्ति के साथ स्टिमुलेशन पद्धति पर काम किया गया और पश्चिमी अपतट के लिए तीन साल की अवधि के लिए एक स्टिम्लेशन पोत को किराए पर लिया गया।

³³ स्टिमुलेशन जॉब में एसिड, सॉल्वेंट और रासायनिक उपचार शामिल हैं, जो कुएं के पास के निर्माण की पारगम्यता में सुधार करते हैं, कुएं का इंजेक्शन उत्पादकता को बढ़ाते हैं।

इस संबंध में, लेखापरीक्षा ने देखा कि समर्पित स्टिमुलेशन पोत को किराए पर लेने के बावजूद, कंपनी ने वार्षिक आधार पर अनुमोदित कार्यभार के मुकाबले इंजेक्शन कुओं की कम संख्या में स्टिमुलेशन जॉब्सकी योजना बनाई। मुंबई हाई में, 680 स्टिमुलेशन जॉब्सके स्वीकृत कार्यभार के मुकाबले, केवल 157 जॉब्सकी योजना बनाई गई थी (23 प्रतिशत); इसमें से केवल 120 कार्य (18 प्रतिशत) किए गए। इसी तरह, नीलम और हीरा में, 176 जॉब्सके स्वीकृत कार्यभार के मुकाबले, केवल 69 स्टिमुलेशन जॉब्स (39 प्रतिशत) किए गए थे। लेखापरीक्षा के वार्षिक योजना विवरण की मांग करने पर नीलम और हीरा ने कहा कि "स्टिमुलेशन कुओं की योजना तैयार नहीं की गई है और वॉटर इंजेक्शन कुओं में स्टिमुलेशन कार्यभार पूरे वर्ष निरंतर आधार पर काम किया जाता है"। प्रबंधन/मंत्रालय ने कहा (फरवरी/जून 2021) कि उपलब्ध संसाधनों के अनुसार स्टिमुलेशन कार्यों के लिए कार्यभार को अनुकूलित किया गया है और अतिरिक्त स्टिमुलेशन पोत को किराए पर लिया जा रहा है तािक वॉटर इंजेक्शन स्टिमुलेशन जॉब्सपर भी ध्यान दिया जा सके।

उत्तर को इस तथ्य से देखने की आवश्यकता है कि समर्पित स्टिमुलेशन पोत को तेल के कुओं की स्टिमुलेशन के लिए मोड़ दिया गया था। सभी क्षेत्रों के लिए वॉटर इंजेक्शन कुओं के लिए स्टिमुलेशन पोत संसाधनों का आवंटन 2016-17 में केवल 3.5 प्रतिशत, 2017-18 में 3.8 प्रतिशत और 2018-19 में 1.4 प्रतिशत था। यह दर्शाता है की जलाशय के स्वास्थ्य की कीमत पर इंजेक्शन कुओं पर तेल के कुओं की स्टिमुलेशन को प्राथमिकता दी।

अन्शंसा संख्या 15

कंपनी को अपने वर्तमान अभ्यास/नीति की समीक्षा करनी चाहिए ताकि जल के इंजेक्शन वाले कुओं को सर्वोत्तम उद्योग प्रथाओं के अनुरूप बनाया जा सके। इससे सिस्टम या वेलबोर को गंभीर नुकसान होने से पहले निवारक उपाय करने और कुओं की इंजेक्शन क्षमता में स्धार करने में मदद मिलेगी

6.6 इंजेक्टरों का बैकवाश

एक अविध के दौरान, कुछ अवांछित सामग्री जैसे जंग के कण, मृत सूक्ष्म जीव, आदि, वेलबोर के पास जमा हो जाते हैं और वेलबोर की स्थिति में सुधार के लिए उन्हें हटाने / साफ करने की आवश्यकता होती है। बैकवाशिंग वॉटर इंजेक्टर निकटवर्ती वेलबोर क्षिति को

7

दूर करने और खोई हुई इंजेक्शन की एक महत्वपूर्ण मात्रा को बहाल करने के लिए एक अतिरिक्त तरीका है। बैकवाश प्रक्रिया में, किसी भी गठन क्षित को साफ करने के लिए इंजेक्टर को वापस प्रवाहित किया जाता है। बैकवाश द्रव के नमूने इंजेक्शन वाले जल की गुणवत्ता का एक महत्वपूर्ण संकेतक हैं और वॉटर इंजेक्शन प्रक्रिया के बारे में अंतर्दृष्टि प्रदान करते हैं। जलाशय की पारगम्यता में कमी या इंजेक्शन में कमी से बचने के लिए इंजेक्टर कुओं को नियमित अंतराल पर बैकवाश करने की आवश्यकता होती है। लेखापरीक्षा ने देखा कि योजना के विरूद्ध बैकवाश गतिविधियों में पर्याप्त कमी थी जैसा कि तालिका 6.3 में दिया गया है।

वर्ष मुंबई हाई फील्ड नीलम और हीरा फील्ड वास्तवि उपलब्धि क्ओं का बैकवाश (सं.) योजना योजना (प्रतिशत में) (सं.) क (सं). 2014-15 377 433 114.9 8 2015-16 406 408 100.5 4 उपलब्ध नही 2016-17 366 344 94.0 12 2017-18 355 235 66.2 4

तालिका 6.3 योजना बनाम वास्तविक बैकवाश कार्य

तालिका से देखा जा सकता है कि मुंबई हाई क्षेत्रों में इंजेक्टरों के बैकवाश की उपलब्धि में कमी की प्रवृत्ति है।

56.7

2018-19

स्रोतः प्रबंधन द्वारा प्रस्तुत डेटा

314

178

6.6.1 मुंबई हाई: एक आंतरिक समिति ने देखा (जुलाई 2012) कि मुंबई हाई में सीमित संख्या में वाटर इंजेक्शन वाले कुओं का बैक फ्लो किया जा रहा था। किमटी ने पाया कि 291 स्ट्रिंग्स में से केवल 132 स्ट्रिंग्स ही गैस लिफ्ट वॉल्व से लैस थीं और इस तरह इन्हें नियमित रूप से बैकवाश किया जा सकता था; शेष 159 स्ट्रिंग्स में गैस लिफ्ट वाल्व प्रावधान की आवश्यकता थी और इसलिए, समिति ने उपचारात्मक कार्रवाई का प्रस्ताव रखा। अनुशंसाओं के अनुपालन की स्थिति लेखापरीक्षा को उपलब्ध नहीं कराई गई थी। मुंबई हाई में गठित एक टास्क फोर्स ने दोहराया (अक्टूबर 2018) कि इंजेक्टरों के नियमित बैकवाशिंग का अच्छी तरह से इंजेक्शन पर सकारात्मक प्रभाव पड़ता है और छह महीने में एक बार इंजेक्टर के बैकवाश की अनुशंसा की जाती है।

लेखापरीक्षा को प्रस्तुत किए गए वॉटर इंजेक्शन बैकवाश नमूनों के आंकड़ों की जांच से पता चला कि बैकवाश की आवधिकता प्रति इंजेक्टर³⁴ एक वर्ष से अधिक है। 334 इंजेक्टरों में से, 26 इंजेक्टरों में कोई बैकवाश नहीं किया गया था और लगभग 158 इंजेक्टर पिछले बैकवाश से छह महीने से अधिक के समय अंतराल को देखते हुए बैकवाश के लिए थे। लेखापरीक्षा ने देखा कि जिन कुओं में गैस लिफ्ट वाल्व स्थापित नहीं थे, वे बैकवाश के लिए अतिदेय थे। मुम्बई उत्तर पश्चिम प्लेटफॉर्म में, लेखापरीक्षा को उपलब्ध कराए गए 77 अभिलेखों में से 42 मामलों में, बैकवाश नमूने नहीं लिए गए थे, जिससे बैकवाश प्रक्रिया अप्रभावी हो गई थी। प्रबंधन ने बैकवाश योजना की असफलता और बैकवाश अन्पालन वाले कुओं के विवरण पर कोई टिप्पणी नहीं की।

6.6.2 नीलम और हीरा: मुंबई हाई क्षेत्र की तुलना में, जिसमें वाटर इंजेक्शन वाले कुओं के बैकवाश की मासिक योजना है, नीलम और हीरा क्षेत्र में बैकवाश के लिए एक सुव्यवस्थित दृष्टिकोण नहीं है। केवल 35 मामलों में, प्रत्येक इंजेक्टर के लिए छह महीने में एक बार किए जाने की आवश्यकता के मुकाबले 2014-15 से 2018-19 के दौरान वाटर इंजेक्शन वाले कुओं का बैकवाश किया गया था। कंपनी द्वारा साझा किए गए बैकवाश विवरण ने संकेत दिया कि प्रक्रिया का नियमित रूप से पालन नहीं किया गया था। नमूनों का विश्लेषण नहीं किया गया, जिससे प्रयास निष्प्रभावी हो गए।

प्रबंधन ने कहा (दिसंबर 2019/फरवरी 2020) कि उपकरण के लिए आवश्यक नमूना स्थल की अनुपलब्धता के कारण बैकवाश की प्रक्रिया के दौरान कोई नमूना एकत्र नहीं किया गया था और इसलिए नमूनों का प्रयोगशाला विश्लेषण उपलब्ध नहीं था। हालांकि, नीलम और हीरा के क्षेत्रों में हर महीने कम से कम 3-5 वाटर इंजेक्टर बैकवाश कार्य करने और एकत्र किए गए बैकवाश जल के नमूने की एक विस्तृत रसायनिक विश्लेषण रिपोर्ट तैयार करने का निर्णय लिया गया है। प्रबंधन/मंत्रालय ने आश्वासन दिया (फरवरी/जून 2021) कि भविष्य में बैकवाश योजना का कड़ाई से पालन किया जाएगा।

³⁴ इंजेक्शन कुआँ / स्ट्रिंग - इंजेक्शन कुआँ एक कुआँ है जिसके माध्यम से जलाशय के दबाव को बनाए रखने के लिए जलाशय में जल डाला जाता है। इंजेक्शन कुएं में सिंगल स्ट्रिंग या ड्यूल स्ट्रिंग्स हो सकते हैं।

अन्शंसा संख्या 16

कंपनी को कुओं की इंजेक्शन क्षमता में सुधार और जल के इंजेक्शन को बढ़ाने के लिए निर्धारित अविध के अनुसार नियमित रूप से कुओं का बैकवाश करना चाहिए। साथ ही जल के इंजेक्शन के लिए नियोजित/जुटाए गए संसाधनों को उत्पादक कुओं की आवश्यकताओं से अलग माना जा सकता है।

6.7 संक्षेप

लेखापरीक्षा ने सभी प्लेटफार्मों में वांछित स्तर की तुलना में उच्च स्तर के क्षरण को देखा जो चिंता का विषय है। कंपनी पाइपलाइनों में जमा मलबे को हटाने के लिए आविधिक पिगिंग योजना का पालन नहीं कर सकी। इसके अलावा, पिग के नमूनों की निगरानी न करने से अभ्यास करने का उद्देश्य विफल हो गया। लेखापरीक्षा ने उच्च घुलित ऑक्सीजन और प्रवाह वेग के गैर-रखरखाव को देखते हुए पाइपलाइनों की समयपूर्व विफलता को भी देखा। यह भी देखा गया कि समय-समय पर वर्कओवर/इंजेक्टरों की स्टिमुलेशन नहीं की गई थी जिसके कारण इंजेक्शन की हानि/सुरक्षा मुद्दे को क्षिति हुई। वॉटर इंजेक्शन कुओं के लिए विशेष रूप से किराए पर लिए गए संसाधनों को जलाशय के स्वास्थ्य की कीमत पर तेल के कुओं में बदल दिया गया था। इस प्रकार, आवश्यकता के अनुसार पाइपलाइनों और इंजेक्शन कुओं का रखरखाव नहीं किया गया था और इंजेक्शन कुओं का वर्कओवर, स्टिमुलेशन और बैकवाश संचालन प्रभावी ढंग से नहीं किया गया था, जिससे इंजेक्शन में गिरावट आई।

डी–ऑक्सीजनेशन टॉवर

अध्याय 7 <u>अप</u>र्याप्त वॉटर इंजेक्शन का प्रभाव

इंजेक्शन जल की नियोजित मात्रा और वांछित गुणवत्ता को बनाए रखने की विफलता ने शून्यता क्षितिपूर्ति पर प्रतिकूल प्रभाव डाला और परिणामस्वरूप जलाशय के दबाव में गिरावट और अंततः कच्चे तेल के उत्पादन पर प्रतिकूल प्रभाव पड़ा। जैसे ही जलाशय का दबाव कम होता है, जलाशय से गैस निकलने लगती है जिससे तेल की पारगम्यता कम हो जाती है।

7.1 जलाशय स्वास्थ्य और निगरानी

क्षेत्रों की स्थापना के बाद से, अपर्याप्त जल के इंजेक्शन के कारण, जलाशय के दबाव में लगातार गिरावट आ रही थी। जिसने कच्चे तेल की उत्पादकता और इसकी अंतिम रिकवरी को प्रभावित किया।

लेखापरीक्षा ने देखा कि मुंबई उच्च, नीलम और हीरा क्षेत्रों में जलाशय का दबाव अपने प्रारंभिक दबाव स्तर से लगातार कम हो रहा है। मुंबई हाई फील्ड में उत्पादन शुरू होने के समय प्रारंभिक जलाशय दबाव 2,250 पीएसआई³⁵ था और वाटर इंजेक्शन की शुरुआत में जलाशय का दबाव 2,100 पीएसआईथा। मुंबई हाई नॉर्थ (L-III) की प्रमुख तेल उत्पादक परत में जलाशय का दबाव 2014 में 1,625 पीएसआई से घटकर दिसंबर 2019 में 1,585.2 पीएसआई हो गया और मुंबई हाई साउथ (L-III) में, यह 2014 में 1,562 पीएसआई से घटकर दिसंबर 2019 में 1,551.7 पीएसआई हो गया। हीरा क्षेत्र में, नवंबर 2019 में जलाशय का दबाव 2,100 पीएसआई के प्रारंभिक जलाशय दबाव से घटकर 900-1,200 पीएसआई हो गया। नीलम क्षेत्र में प्रारंभिक दबाव लगभग 2,100 पीएसआई था, जो नवंबर 2019 में घटकर 1000-1520 पीएसआई हो गया।

जलाशय में गैस कैप से उच्च गैस उत्पादन द्वारा वाटर इंजेक्शन की कमी के कारण जलाशय के दबाव में गिरावट को और बढ़ा दिया गया है। गैस/तेल अनुपात³⁶ में वृद्धि जलाशय के दबाव में कमी का संकेत है। जैसे ही जलाशय का दबाव कम होता है, जलाशय में गैस बनने लगती है, जिससे तेल की पारगम्यता कम हो जाती है।

कंपनी और उसके आंतरिक कार्य बल/समितियों (1990-2019) द्वारा नियुक्त बाहरी डोमेन विशेषज्ञों/सलाहकारों ने जलाशय के दबाव में गिरावट पर प्रकाश डाला (अनुलग्नक-XIII) और कम दबाव वाले क्षेत्रों को संबोधित करने, शून्यता मुआवजे में सुधार और इस तरह जलाशय स्वास्थ्य की आवश्यकता को दोहराया।

³⁵ दबाव की मापन इकाई - पाउंड प्रति वर्ग इंच (पीएसआई)

³⁶ गैस/तेल अनुपात - घोल से निकलने वाली गैस के आयतन का मानक परिस्थितियों में तेल के आयतन (वॉल्यूम/वॉल्यूम) से अनुपात है।

मंत्रालय ने अपनी तकनीकी शाखा, हाइड्रोकार्बन महानिदेशक (डीजीएच) के माध्यम से भी समय-समय पर अपर्याप्त वॉटर इंजेक्शन और जलाशय के स्वास्थ्य और कुएँ उत्पादकता पर इसके प्रभाव पर चिंता व्यक्त की है। अपनी आवधिक उत्पादन समीक्षा बैठकों में, डीजीएच ने जल के इंजेक्शन और जलाशय के स्वास्थ्य के रखरखाव के महत्व पर भी जोर दिया था जैसा कि नीचे बताया गया है:

- मुंबई हाई और हीरा में जलाशय प्रबंधन खराब है; मुंबई उच्च क्षेत्रों में दबाव में गिरावट देखी गई है। क्षेत्र का खराब वितरण³⁷ और अपर्याप्त मात्रा के कारण जल का इंजेक्शन सफल नहीं हो पा रहा है। जल इंजेक्टर के असमान क्षेत्र प्रसार/वॉटर इंजेक्शन दरों के परिणामस्वरूप जलाशय में दबाव गिर गया जबिक अपर्याप्त जल इंजेक्शन/कम शून्यता प्रतिस्थापन अनुपात औसत जलाशय दबाव में गिरावट के लिए जिम्मेदार है। दबाव में गिरावट/भंडार के दबाव में कमी के परिणामस्वरूप अच्छी तरह से उत्पादकता में गिरावट आती है। इस प्रकार, वॉटर इंजेक्शन परिकल्पना के अनुसार जलाशय का समर्थन नहीं करता। डीजीएच ने इंजेक्टर और उत्पादकों के बीच उपयुक्त पैटर्न द्वारा क्षेत्र के वितरण में सुधार का सुझाव दिया (अप्रैल 2018)।
- नीलम-हीरा क्षेत्र में तेल उत्पादन उत्तरी हीरा क्षेत्र (मई 2017) में दबाव गिरावट के कारण बाधित था और डीजी-डीजीएच ने देखा (अगस्त 2018) कि 'नीलम-हीरा के उच्च ग्णवत्ता वाले जलाशयों के बावजूद, साधन' क्प्रबंधन के कारण उत्पादन बाधित हुआ है।
- मुंबई हाई और नीलम-हीरा के खेतों में दबाव काफी कम हो गया है। मुंबई हाई/हीरा क्षेत्रों के जलाशयों की उत्पादकता में तीव्र गिरावट का मुख्य कारण कम संचयी शून्यता मुआवजे के कारण जलाशय के दबाव में तेज गिरावट है। एक बार जब दबाव कम हो जाता है, तो वाटर इंजेक्शन उत्पादकों को तेल देने के मामले में प्रभावी नहीं होता है और यह पास के उत्पादक को शॉर्ट सर्किट करता है। अनियमित/अपर्याप्त इंजेक्शन से जलाशय के दबाव को बनाए रखने का उद्देश्य प्राप्त नहीं हुआ। कुल वॉटर इंजेक्शन दर में काफी हद तक वृद्धि करनी पड़ सकती है और जलाशय के दबाव को पर्याप्त रूप से बहाल करना होगा (फरवरी 2021)।

यदि उपरोक्त सिफारिशों को पूरी तरह से लागू किया जाता तो इससे जलाशयों का दबाव बनाए रखने में मदद मिलती।

प्रबंधन/मंत्रालय ने कहा (फरवरी/जून 2021) कि पिछले दो वर्षों के दौरान मुंबई हाई में ठोस कार्रवाई की गई है और इसके परिणामस्वरूप जून 2018 में वॉटर इंजेक्शन स्तर 7.5

_

³⁷ क्षेत्र वितरण - भौगोलिक फैलाव।

लाख बीडब्ल्यूपीडी से बढ़कर अप्रैल 2020 में 9.5 लाख बीडब्ल्यूपीडी हो गया और जल का इंजेक्शन मार्च 2021 तक इसे बढ़ाकर 11.5 लाख bwpd करने की योजना है। यह भी कहा गया था कि उच्च गैस तेल अनुपात वाले कुओं को जलाशय प्रबंधन के हिस्से के रूप में बंद कर दिया गया था।

प्रबंधन/मंत्रालय के उत्तर को इस तथ्य के संदर्भ में देखे जाने की आवश्यकता है कि 2019-20 और 2020-21 के दौरान मुंबई हाई में वास्तविक जल का इंजेक्शन भी योजना से कम था। 2019-20 के दौरान, वार्षिक योजना में 11.31 लाख BWPD के औसत जल के इंजेक्शन के मुकाबले, प्राप्त वास्तविक औसत वॉटर इंजेक्शन केवल 9.35 लाख BWPD (17 प्रतिशत की कमी) था। इसी तरह, 2020-21 के दौरान बिल्ड-अप योजना में नियोजित 10.51 लाख बीडब्ल्यूपीडी के औसत जल के इंजेक्शन के मुकाबले वास्तविक औसत वॉटर इंजेक्शन केवल 8.86 लाख बीडब्ल्यूपीडी (15.76 प्रतिशत की कमी) था। इसके अलावा, आंतरिक समितियों³⁸ के साथ-साथ सलाहकारों³⁹ ने बार-बार जलाशय के दबाव को बढ़ाने के लिए जल के इंजेक्शन की मात्रा बढ़ाने की अन्शंसा की है।

पुनः विकास योजना इंजेक्शन स्तर और वास्तविक इंजेक्शन, उम्र बढ़ने के बुनियादी ढांचे और अच्छी तरह से रखरखाव के मुद्दों के बीच निरंतर अंतर के साथ इंजेक्शन की देरी से शुरू होने को देखते हुए, यह अनिश्चित है कि कंपनी निकट भविष्य में 100 प्रतिशत के शून्य प्रतिस्थापन को प्राप्त करने में सक्षम होगी और परिकल्पित दबाव स्तर और जलाशय स्वास्थ्य को बनाए रखेगी।

अनुशंसा संख्या 17

कंपनी पुनर्विकास योजना स्तरों पर इंजेक्शन की मात्रा सुनिश्चित करके दबाव गिरावट को संबोधित करने के लिए एक समयबद्ध कार्य योजना तैयार कर सकती है और वाटर इंजेक्शन के असमान क्षेत्र प्रसार से बच सकती है।

³⁸ मल्टी-डिसिप्लिनरी टीम (एमडीटी) की रिपोर्ट 'मुंबई हाई में सुविधा लागत अनुकूलन और वॉटर इंजेक्शन सुधार' पर - जुलाई 2012, 'एमएच फील्ड में जल के इंजेक्शन के विस्तार और पुनर्वितरण' पर टास्क फोर्स रिपोर्ट-अक्टूबर 2018।

³⁹ अंतर्राष्ट्रीय सलाहकार मैसर्स गैफनी, क्लाइन एंड एसोसिएट 2000 से एमएच पुनर्विकास योजनाओं के कार्यान्वयन के लिए परामर्श कार्य के लिए लगे हुए थे और अंतर्राष्ट्रीय पेट्रोलियम सलाहकार विलियम एम कॉब एंड एसोसिएट्स, आईएनसी को मुंबई हाई फील्ड में वॉटर इंजेक्शन संचालन की समीक्षा करने के लिए लगाया गया था (अगस्त 2009)।

7.2 निष्पादन बेंचमार्किंग

कंपनी का निष्पादन बेंचमार्किंग समूह मार्च 2002 में बनाया गया था और इसका मुख्य कार्य निष्पादन अनुबंधों⁴⁰ का विकास और निगरानी करना था; दुनिया की अग्रणी अन्वेषण और उत्पादन कंपनियों के साथ कंपनी की गतिविधियों के लिए मानको को विकसित करना था। बेंचमार्किंग समूह कंपनी के भीतर प्रत्येक सामरिक व्यापार इकाई (एसबीयू) के प्रमुख निष्पादन संकेतक (केपीआई) की पहचान करता है। केपीआई मंत्रालय के साथ एमओयू मापदंडों से प्रवाहित होते हैं और इसमें अन्य एसबीयू महत्वपूर्ण पैरामीटर शामिल होते हैं। 'जलाशय स्वास्थ्य' के केपीआई में 'वाटर इंजेक्शन' और 'जलाशय दबाव रखरखाव' के लक्ष्य शामिल हैं (यह 2015-16 से शुरू किया गया था)। एसबीयू (परिसंपत्ति) द्वारा प्रस्तावित लक्ष्य के आधार पर 'जलाशय स्वास्थ्य' के केपीआई के निष्पादन का मूल्यांकन किया जाता है।

लेखापरीक्षा ने देखा कि बेंचमार्किंग समूह ने उपरोक्त सभी केपीआई को विश्व की अग्रणी अन्वेषण और उत्पादन कंपनियों के साथ मानक स्थापित नहीं किया। निष्पादन अनुबंध में जलाशय के दबाव पर केपीआई के संबंध में, कंपनी ने जलाशयों के दबाव को पूल/ आरक्षित के केवल 70 प्रतिशत पर बनाए रखने का स्थिर लक्ष्य बनाए रखा।

प्रबंधन ने कहा (जून 2020) कि उपलब्धि के इतिहास को ध्यान में रखते हुए 2016-17 में एक स्मार्ट (विशिष्ट, मापने योग्य, प्राप्त करने योग्य, प्रासंगिक, समयबद्ध) 70 प्रतिशत केपीआई निर्धारित किया गया था। प्रबंधन/मंत्रालय ने आगे कहा (फरवरी/जून 2021) कि विश्व की अग्रणी अन्वेषण और उत्पादन कंपनियों के साथ बेंचमार्किंग केपीआई पर उचित सावधानी बरती जाएगी।

प्रबंधन के उत्तर को इस तथ्य के संदर्भ में देखे जाने की आवश्यकता है कि वार्षिक वॉटर इंजेक्शन योजना को क्षेत्रीय विकास योजना के अनुसार प्राप्त करने योग्य मात्रा और आवश्यकता से हमेशा कम के आधार पर बाधाओं को ध्यान में रखते हुए तैयार किया गया था। जलाशय के दबाव में निरंतर कमी, विभिन्न परतों के बीच इंजेक्शन के असमान वितरण और कच्चे तेल के परिणामी कम उत्पादन को देखते हुए, इस केपीआई के तहत क्षेत्र के निष्पादन के मूल्यांकन के लिए प्रबंधन द्वारा इस तरह के स्थिर 70 प्रतिशत लक्ष्य को रखने से इसका उद्देश्य विफल हो गया है। इसके अलावा, लेखापरीक्षा ने देखा कि

⁴⁰ निष्पादन अनुबंध एसबीयू के प्रमुख के साथ दर्ज सामरिक व्यावसायिक इकाइयों के निष्पादन के मूल्यांकन के लिए एक उपकरण है।

2019-20 से, जलाशय स्वास्थ्य का मानदंड निष्पादन अनुबंध का हिस्सा नहीं है, जो शीर्ष प्रबंधन द्वारा जलाशय स्वास्थ्य की निगरानी की कमी को दर्शाता है। मंत्रालय के साथ कंपनी द्वारा हस्ताक्षरित समझौता ज्ञापन में जलाशय के स्वास्थ्य पर कोई पैरामीटर नहीं है।

अनुशंसा संख्या 18

कंपनी को अपने संचालन के सही निष्पादन का मूल्यांकन करने के लिए प्राप्त करने योग्य आधार के बजाय अंतर्राष्ट्रीय / उद्योग के सर्वश्रेष्ठ निष्पादन के मानको पर विचार करते हुए लक्ष्य तय करना चाहिए। निष्पादन निगरानी और मानक तय करके वाटर इंजेक्शन के महत्व को बढ़ाया जा सकता है।

7.3 कच्चे तेल के उत्पादन पर प्रभाव

जल के इंजेक्शन में कमी कच्चे तेल के कम उत्पादन के महत्वपूर्ण कारणों में से एक है। कंपनी अपने जलाशयों के सिमुलेशन मॉडल के आधार पर अपना उत्पादन प्रोफाइल तैयार करती है। लेखापरीक्षा ने प्रबंधन से कम वॉटर इंजेक्शन के कारण कच्चे तेल के उत्पादन पर प्रभाव का अनुमान लगाने का अनुरोध किया। कंपनी के आंतरिक रिसर्च इंस्टीट्यूट, इंस्टीट्यूट ऑफ रिजर्वायर स्टडीज ने मौजूदा सिमुलेशन मॉडल का इस्तेमाल करते हुए पुनर्विकास योजना स्तरों के जल के इंजेक्शन की मात्रा को बदलकर वास्तविक इंजेक्शन के साथ क्रूड तक पहुंचने के लिए इस्तेमाल किया जो कम जल के इंजेक्शन के कारण उत्पादित नहीं किया जा सका। जलाशय अध्ययन संस्थान ने सूचित किया (जुलाई 2020) कि व्यवहार्यता रिपोर्ट (आधार प्लस वृद्धिशील) के अनुसार उत्पादन की तुलना में 2014-15 से 2018-19 के दौरान कम जल के इंजेक्शन के कारण 3.695 एमएमटी⁴¹ तेल की कमी है।

लेखापरीक्षा ने देखा कि कंपनी ने 2014-15 से 2018-19 के दौरान इन क्षेत्रों में विभिन्न दरों पर वास्तविक परिचालन हानि की सूचना दी। कंपनी द्वारा बताई गई वास्तविक परिचालन हानि 0.64 से 2.35 प्रतिशत (मुंबई हाई), 3.55 से 11.22 प्रतिशत (हीरा) और 0.03 से 16 प्रतिशत (नीलम) के बीच थी। इसलिए, लेखापरीक्षा ने 2014-15 से 2018-19 के दौरान रिपोर्ट की गई वास्तविक हानि पर विचार करते हुए 3.695 एमएमटी के तेल घाटे को प्रतिवेदित करते हुए प्रबंधन को फिर से काम किया, जो 3.79 एमएमटी

⁴¹ इस तेल घाटे की गणना 6 प्रतिशत की परिचालन हानि को देखते हुए की गई थी।

निकला। कम वॉटर इंजेक्शन के कारण 3.79 एमएमटी तेल की कमी का मूल्य 2014-15 से 2018-19 के दौरान ₹11,276.79 करोड़ (अनुलग्नक-XIV ए, बी) था। प्रबंधन/मंत्रालय ने कहा (फरवरी/जून 2021) कि वैधानिक कर पर विचार करने के बाद ओएनजीसी के लिए तेल का मूल्य ₹ 7,802.50 करोड़ होगा। इस प्रकार, शेष ₹3,474.29 करोड़ भारत सरकार को राजस्व हानि है।

प्रबंधन ने कहा (फरवरी 2021) कि 2014-19 की अविध के लिए जलाशय अध्ययन संस्थान द्वारा अनुमानित तेल की कमी स्थायी नहीं बिल्क आस्थिगित उत्पादन है, जिसके लिए ठोस विकास योजनाएँ लागू की जा रही हैं।

प्रबंधन की प्रतिक्रिया उचित नहीं है। हाइड्रोकार्बन महानिदेशालय (डीजीएच) ने मुंबई हाई और नीलम और हीरा क्षेत्रों के जलाशय निष्पादन विश्लेषण के संबंध में देखा (फरवरी 2021) कि एक बार जलाशय का दबाव कम होने के बाद, जल का इंजेक्शन उत्पादक को तेल निकालने के मामले में प्रभावी नहीं होता है और यह कम दबाव क्षेत्र के माध्यम से निकटवर्ती उत्पादक को शॉर्ट-सर्किट कर सकता है। यहां तक कि कम दबाव वाले जलाशय में कोई भी बढ़ी हुई तेल वसूली प्रक्रिया प्रभावी नहीं होगी।

इसके अलावा, मंत्रालय ने अपने उत्तर में कहा (जून/जुलाई 2021) कि:

- i) जलाशय के स्वास्थ्य को बनाए रखना एक पुरानी समस्या रही है। ऐतिहासिक रूप से, पर्याप्त जल के इंजेक्शन की कमी रही है, भले ही सभी विकास योजनाओं में जलाशय के दबाव को बनाए रखने और माध्यमिक तेल वसूली में सुधार के लिए एक महत्वपूर्ण इनपुट के रूप में जल के इंजेक्शन की परिकल्पना की गई हो।
- ii) मुंबई हाई और नीलम हीरा क्षेत्रों में विश्व स्तर पर तुलनीय पुनर्प्राप्ति कारक प्राप्त करने के लिए अच्छे जलाशय स्वास्थ्य और पर्याप्त जलाशय दबाव को बनाए रखना अनिवार्य है।
- iii) कम दबाव वाले जलाशय में ईओआर प्रक्रिया प्रभावी नहीं होगी। साथ ही, एक बार जब दबाव कम हो जाता है, तो जल का इंजेक्शन उत्पादक को तेल देने के मामले में प्रभावी नहीं होता है और यह कम दबाव पथ के माध्यम से पास के उत्पादक को शॉर्ट-सर्किट करता है, जिससे उत्पादक कुओं से तेल उत्पादन कम हो जाता है।
- iv) जल के इंजेक्शन की पर्याप्त मात्रा और गुणवत्ता के माध्यम से संपूर्ण वॉटर इंजेक्शन बुनियादी ढांचे को सुधारने और जलाशय के दबाव को बढ़ाने के लिए व्यवस्थित प्रयास आवश्यक हैं। जैसा कि पहले कहा गया है, सुधार की काफी गुंजाइश है और अब तक हासिल किए गए संचयी वसूली कारक में उल्लेखनीय वृद्धि हुई है।

v) 2039-40 (मुंबई हाई फील्ड में 33 प्रतिशत) तक रिकवरी फैक्टर में अनुमानित वृद्धि दुनिया भर में समान जलाशयों की तुलना में कम है। जलाशय के स्वास्थ्य को बनाए रखते हुए दीर्घकालिक लाभ को ध्यान में रखते हुए क्षेत्र विकास और उत्पादन टीमों को सामंजस्य में काम करने की आवश्यकता है।

कंपनी द्वारा ओएनजीसी एनर्जी स्ट्रैटेजी - 2040 के निर्माण के लिए नियुक्त सलाहकार, मैसर्स बोस्टन कंसिल्टंग ग्रुप (इंडिया) प्रा.लि. ने भी देखा (दिसंबर 2018) कि 'परिपक्व क्षेत्रों में ओएनजीसी की रिकवरी दर वर्तमान में 25-35 प्रतिशत है। इसकी तुलना में, सर्वीत्तम श्रेणी के वैश्विक साथियों ने 45-55 प्रतिशत की वसूली दर हासिल की है।

प्रबंधन ने कहा (जून 2020/फरवरी 2021) कि उत्पादन बेस प्रोडक्शन के साथ-साथ नए इनपुट से आता है। इसलिए, कुल उत्पादन, क्षेत्र के निष्पादन का अधिक यथार्थवादी माप प्रदान करता है। 1 अप्रैल 2020 तक, मुंबई हाई और नीलम और हीरा क्षेत्रों के मामले में, 3.666 एमएमटी की गिरावट के साथ 613.105 एमएमटी के योजना उत्पादन के मुकाबले संचयी उत्पादन 609.439 एमएमटी था।

प्रबंधन का उत्तर मान्य नहीं है। कंपनी ने छह फीसदी नुकसान की अनुमित देकर नियोजित उत्पादन पर विचार किया। 2014-15 से 2018-19 के दौरान मुंबई हाई के मामले में औसत हानि 1.43 प्रतिशत थी। इसके अलावा, कंपनी द्वारा रिपोर्ट किए गए वास्तविक उत्पादन में गैर-कच्चे तेल तत्व शामिल थे, जैसे मूल तलछट और जल (बीएस एंड डब्ल्यू)⁴², ऑफ-गैस⁴³ और कंडेनसेट मात्रा⁴⁴ जो पीएनजी नियमों के अनुसार कच्चे तेल के उत्पादन का हिस्सा नहीं है। रिपोर्ट किए गए उत्पादन में गैर-कच्चे तेल तत्वों को छोड़कर, अप्रैल 2020 तक संचयी उत्पादन और वास्तविक उत्पादन के बीच का अंतर 43.88 एमएमटी था।

⁴² मूल तलछट और जल (बीएस एंड डब्ल्यू) गैर-हाइड्रोकार्बन की मात्रा को संदर्भित करता है जो गंदगी (तलछट) और जल से बना होता है। ओएनजीसी अपतट में, बीएस एंड डब्ल्यू युक्त आंशिक रूप से स्थिर कच्चे तेल को कच्चे तेल के उत्पादन की रिपोर्टिंग के लिए मापा जाता है। आंशिक रूप से स्थिर कच्चे तेल को पूर्ण स्थिरीकरण के लिए अपतट से तटवर्ती टर्मिनल (उरण संयंत्र) में भेजा जाता है, जिसमें आंशिक रूप से कच्चे तेल से बीएस एंड डब्ल्यू को हटा दिया जाता है।

⁴³ ऑफ-गैस आंशिक रूप से स्थिर कच्चे तेल में घुली हुई गैस है जिसे उरण संयंत्र में कच्चे तेल की स्थिरीकरण प्रक्रिया के दौरान अलग किया जाता है और रिपोर्ट किए गए गैस उत्पादन में जोड़ा जाता है।

⁴⁴ कंडेनसेट: तरल हाइड्रोकार्बन जो कच्चे तेल की तुलना में हल्का होता है, जिसकी एपीआई ग्रेविटी 45 से अधिक होती है उसे कंडेनसेट कहा जाता है। मूल रूप से, जलाशय की स्थितियों यानी जलाशय के तापमान और दबाव पर जलाशय में कोई घनीभूत नहीं होता है। कुएं के बोर से सतह तक गैस के प्रवाह के दौरान, कुएं के द्रव के दबाव और तापमान में परिवर्तन होता है अर्थात तापमान और दबाव दोनों में कमी आती है, और परिणामस्वरूप गैस के भारी हाइड्रोकार्बन घटक संघनित रूप में संघनित हो जाते हैं।

डीजीएच ने भी लेखापरीक्षा के साथ सहमित व्यक्त की (जुलाई 2021) कि 'गैर कच्चे तेल तत्व' (बीएस एंड डब्ल्यू, ऑफ-गैस और कंडेनसेट) को पीएनजी नियम, 1959 नियम 3 (बी) समय-समय पर संशोधित के अनुरूप 'कच्चे तेल' के उत्पादन आंकड़े का निर्धारण करने के उद्देश्य से बाहर रखा जाना चाहिए।

इसके अलावा, मुंबई हाई, नीलम और हीरा क्षेत्रों के हाइड्रोकार्बन वॉल्यूम के शेष वसूली योग्य भंडार का स्वतंत्र रूप से आकलन करने के लिए मंत्रालय के निर्देशों के अनुसार अंतर्राष्ट्रीय ख्याति के सलाहकार (मैसर्स जीसीए, मैसर्स बेइसिप फ्रैनलैब) को कंपनी द्वारा लगाया गया था। 2019-2040 की अविध को कवर करने वाली सलाहकार रिपोर्ट के अनुसार, सलाहकार का अनुमान 2019-2040 की अविध के लिए कंपनी के अनुमान से 16.12 एमएमटी कम था।

7.4 संक्षेप

लेखापरीक्षा ने वॉटर इंजेक्शन संचालन की शुरुआत के बाद से एक से कम रिक्त स्थान प्रतिस्थापन अनुपात के साथ अपर्याप्त वॉटर इंजेक्शन देखा। यह ध्यान देने योग्य है कि कंपनी मार्च 2019 तक मुंबई हाई में केवल 54.43 प्रतिशत, हीरा में 78.8 प्रतिशत और नीलम क्षेत्रों में 42 प्रतिशत का संचयी शून्यता मुआवजा प्राप्त कर सकी। लेखापरीक्षा ने विभिन्न परतों के बीच इंजेक्शन जल के असमान वितरण, जलाशय के दबाव में निरंतर गिरावट, दबाव सिंक का विकास और उच्च गैस / तेल अनुपात वाले कुओं से उत्पादन को भी देखा जो कुओं के उत्पादन को प्रभावित करता है। इन परिपक्व क्षेत्रों से वर्तमान पुनः विकास योजनाओं के साथ, और परिकल्पित प्रोफ़ाइल में निरंतर गिरावट को देखते हुए, 60 एमएमटी (43.88+16.12) के संचयी तेल घाटे की वसूली की संभावना नहीं है। इस नुकसान को कंपनी द्वारा दावा किए गए आस्थगित उत्पादन के रूप में नहीं बल्कि एक स्थायी नुकसान के रूप में माना जा सकता है। इसके अलावा, इस तेल घाटे के एक हिस्से के शोषण के लिए भी, अतिरिक्त निवेश की आवश्यकता है और इसकी आर्थिक तेल वसूली की दृष्ट से समीक्षा की आवश्यकता है।

निष्कर्ष

ओएनजीसी के कच्चे तेल उत्पादन (59 प्रतिशत) का बड़ा हिस्सा पश्चिमी अपतटीय क्षेत्रों से आता है। मुंबई हाई और नीलम-हीरा क्षेत्र प्रमुख तेल उत्पादक हैं जो क्रमशः 1976 और 1984 से काम कर रहे हैं और इसलिए, इन परिपक्व क्षेत्रों में उत्पादन में गिरावट की आशंका है। जलाशय स्वास्थ्य प्रबंधन और जलाशय से कच्चे तेल की रिकवरी बढ़ाने के लिए वॉटर इंजेक्शन एक महत्वपूर्ण इनपुट है। जलाशय के दबाव को उसके प्रारंभिक स्तर पर बनाए रखने के लिए वॉछित स्तर पर आवश्यक मात्रा में जल का इंजेक्शन आवश्यक है। कंपनी ने अपनी पुनर्विकास योजनाओं में 100 प्रतिशत पर पूर्ण शून्य प्रतिस्थापन (अंत: क्षेपित जल के बराबर तरल निकालना) पर विचार किया। ओएनजीसी ने मुंबई हाई और हीरा में क्षेत्र उत्पादन शुरू होने के छह से आठ साल बाद वाटर इंजेक्शन शुरू किया। 100 प्रतिशत शून्यता क्षतिपूर्ति के प्रति प्राप्त किया गया कुल संचयी शून्यता क्षतिपूर्ति केवल 54.43 प्रतिशत (मुंबई हाई), 42 प्रतिशत (नीलम) और 78.8 प्रतिशत (हीरा) थी।

पुनर्विकास योजनाओं के अनुसार वार्षिक योजना में वॉटर इंजेक्शन मात्रा की योजना हमेशा इंजेक्शन मात्रा की आवश्यकता से कम थी और वास्तविक वाटर इंजेक्शन मात्रा और भी कम थी। वार्षिक योजना तैयार करने के लिए रिग्स/स्टीमुलेशन जलयानों, वॉटर इंजेक्शन अवसंरचना और पाइपलाइन नेटवर्क आदि की उपलब्धता की बाधाओं को एक मानदंड के रूप में माना गया था। इसके परिणामस्वरूप निरंतर कम संचयी शून्यता क्षतिपूर्ति मिली।

कंपनी वॉटर इंजेक्शन उपकरण के समय पर प्रतिस्थापन/ ओवरहाल सुनिश्चित नहीं कर सकी; कई उपकरणों ने अपने डिजाइन परिचालन समय को पार कर लिया, जिसने उपकरणों की परिचालन उपलब्धता और विश्वसनीयता को प्रभावित किया। मूल उपकरण निर्माता द्वारा निर्धारित उनके अनिवार्य कार्यकारी समय और कंपनी द्वारा निर्धारित कार्यकारी समय के बाद महत्वपूर्ण उपकरणों का सुधार भी समय पर सुनिश्चित नहीं किया गया था। इसके परिणामस्वरूप जलाशय में इंजेक्ट किए गए जलकी गुणवत्ता और मात्रा दोनों को प्रभावित करने वाले उपकरणों की बार-बार विफलता/ट्रिपिंग हुई। इस प्रकार, वॉटर इंजेक्शन सुविधाएं वॉटर इंजेक्शन आवश्यकताओं को पूरा करने के लिए अपर्याप्त थीं.

लेखापरीक्षा ने कंपनी द्वारा अपनाए गए गुणवत्ता मानकों की तुलना में इंजेक्ट किए गए जल की गुणवत्ता को बनाए रखने और अपने स्वयं के स्वीकृत गुणवत्ता मानकों को डाउनग्रेड करने में अंतराल देखा। लेखापरीक्षा ने आंतरिक एजेंसियों द्वारा अनुशंसित सुधारात्मक कार्रवाइयों के अनुपालन को सुनिश्चित करने में जल की गुणवत्ता के मानकों की गलत रिपोर्टिंग और नियंत्रण के निरंतर अंतराल को भी देखा। आवश्यक स्तर पर रसायनों की खुराक न देनें से, गुणवत्ता मानकों का पालन न होनें के साथ-साथ उपकरणों की अनुपलब्धता उत्पादन और जलाशय स्वास्थ्य को बढ़ाने के प्रयासों पर चिंता बढ़ाती है।

लेखापरीक्षा ने सभी प्लेटफार्मों पर वांछित स्तर की तुलना में उच्च स्तर के क्षरण को देखा जो चिंता का विषय है। लेखापरीक्षा ने उच्च घुलित ऑक्सीजन और प्रवाह वेग के गैर-रखरखाव को देखते हुए पाइपलाइनों की समयपूर्व विफलता को भी देखा। आवश्यकता के अनुसार पाइपलाइनों और इंजेक्शन कुओं का रखरखाव नहीं किया गया था और इंजेक्शन कुओं का वर्कओवर, स्टीमुलेशन (प्रोत्साहन) और बैकवाश परिचालन प्रभावी ढंग से नहीं किया गया था, जिससे अंतःक्षेपन में गिरावट आई।.

जैसा कि आंतरिक समितियों/संस्थानों द्वारा दर्ज किया गया था, उपचारात्मक कार्रवाइयां विलंबित, अपर्याप्त और अप्रभावी थीं क्योंकि कुछ क्षेत्रों में प्रेशर सिंक विकसित हो गए थे और पाइपलाइन मरम्मत से परे क्षतिग्रस्त हो गई थीं। निरंतर कम शून्यता क्षतिपूर्ति के परिणामस्वरूप उत्पादक क्षेत्रों में प्रेशर सिंक उत्पन्न हो गया। पेट्रोलियम और प्राकृतिक गैस मंत्रालय के अपस्ट्रीम नियामक, महानिदेशक हाइड्रोकार्बन ने जलाशय के दबाव में गिरावट, अपर्याप्त वॉटर इंजेक्शन और खराब जलाशय प्रबंधन पर चिंता व्यक्त की। लक्ष्य तय करने के लिए कंपनी द्वारा अंतर्राष्ट्रीय मानकों को नहीं अपनाया गया है। अपर्याप्त वॉटर इंजेक्शन और खराब जलाशय प्रबंधन के परिणामस्वरूप उत्पादन में तेजी से गिरावट आई; हालांकि, स्धारात्मक कार्रवाई अक्रियाशील थी.

इस प्रकार, इंजेक्शन के बुनियादी ढांचे के पुराने होने, अंतःक्षेपित जल की खराब गुणवत्ता के कारण बार-बार पाइपलाइन रिसाव, परिकल्पित इनपुट के गैर-कार्यान्वयन और कुछ हद तक, उच्च गैस-तेल अनुपात वाले कुओं से उत्पादन के कारण क्षेत्र में जल का अंतःक्षेपन प्रभावित हुआ था। इससे जलाशय के दबाव में तेजी से गिरावट आई और कच्चे तेल के उत्पादन पर असर पड़ा। यहां तक कि लेखापरीक्षा के अनुरोध पर कंपनी द्वारा स्वयं के अनुमान के अनुसार, इस कमी वाले वाटर इंजेक्शन से ओएनजीसी को ₹ 7,802.50 करोड़ के कच्चे तेल के उत्पादन की हानि हुई और वर्ष 2014-15 से 2018-19 के दौरान भारत सरकार को ₹ 3,474.29 करोड़ की राजस्व हानि हुई।

नई दिल्ली

दिनांक: 13 दिसम्बर 2021

सारबी विकातन

(आर. जी. विश्वनाथन)

उप नियंत्रक एवं महालेखापरीक्षक (वाणिज्यिक) एवं अध्यक्ष, लेखापरीक्षा बोर्ड

प्रतिहस्ताक्षरित

नई दिल्ली

दिनांक: 14 दिसम्बर 2021

(गिरीश चंद्र मुर्म्)

भारत के नियंत्रक एवं महालेखापरीक्षक

अनुलग्नक

अनुलग्नक-। (जैसा कि पैरा 2.2 में संदर्भित है) सलाहकार/इन-हाउस रिपोर्ट लेखापरीक्षा रिपोर्ट में उद्धृत

क्रमांक सं.	सलाहकार का नाम	वर्ष	श्रेणी
1	जल गुणवत्ता निगरानी मानकों पर आरजीएल रिपोर्ट (फरवरी 1984)	1984	आंतरिक
2	दास गुप्ता द्वारा बॉम्बे हाई रिव्यू कमेटी	1990	आंतरिक समिति
3	कैप्रोको इंटरनेशनल लिमिटेड जंग की समस्या पर रिपोर्ट और उपचारात्मक उपायों की सिफारिश	1998	अंतर्राष्ट्रीय
4	गणेश ठाकुर द्वारा मुंबई हाई और नीलम हीरा वॉटर इंजेक्शन परियोजनाएं (2007)	2007	अंतर्राष्ट्रीय
5	विलियम कॉब एंड एसोसिएट्स द्वारा मुंबई हाई फील्ड का मूल्यांकन	2009	अंतर्राष्ट्रीय
6	मुंबई हाई फील्ड में 40 प्रतिशत रिकवरी हासिल करने के संबंध में मेसर्स जीसीए का परियोजना जापन।	2009	अंतर्राष्ट्रीय
7	इंजेक्शन जल की गुणवत्ता और मुंबई हाई के इंजेक्टरों के इंजेक्शन मूल्यांकन पर आईआरएस रिपोर्ट	2011	आंतरिक संस्थान
8	इंजीनियरिंग और महासागर प्रौद्योगिकी संस्थान द्वारा वॉटर इंजेक्शन पाइपलाइन का विफलता विश्लेषण	2012	आंतरिक संस्थान
9	मुंबई हाई में सुविधा लागत अनुकूलन और वॉटर इंजेक्शन सुधार पर रिपोर्ट	2012	आंतरिक समिति
10	मैसर्स बायफेज द्वारा मुंबई हाई साउथ फेस-॥ के लिए फील्ड डेवलपमेंट प्लान की सहकर्मी समीक्षा।	2014	अंतर्राष्ट्रीय
11	वॉटर इंजेक्शन पाइपलाइनों की समयपूर्व विफलता पर समिति की रिपोर्ट	2014	आंतरिक समिति
12	तेल और गैस उत्पादन प्रौद्योगिकी संस्थान की वॉटर इंजेक्शन कुओं के लिए ट्यूबिंग धातु विज्ञान की समीक्षा	2016	आंतरिक संस्थान
13	मुंबई हाई में वॉटर इंजेक्शन के विस्तार और पुनर्वितरण पर टास्क फोर्स समिति की रिपोर्ट	2018	आंतरिक समिति
14	तेल और गैस उत्पादन प्रौद्योगिकी संस्थान (आईओजीपीटी) का हाल ही में साइड-ट्रैक किए गए कुओं का प्रदर्शन विश्लेषण	2018	आंतरिक संस्थान
15	बोस्टन कंसिल्टिंग ग्रुप द्वारा ओएनजीसी एनर्जी स्ट्रैटेजी -2040	2018	अंतर्राष्ट्रीय

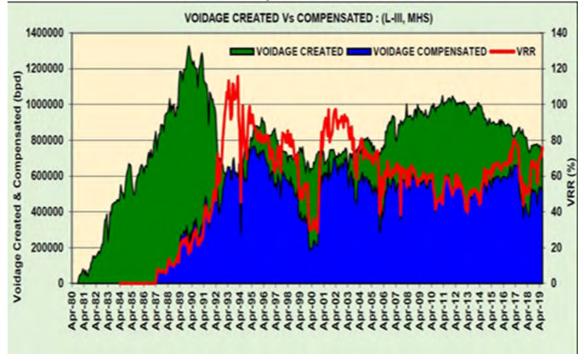
2021 की प्रतिवेदन संख्या 19

16	गैफने,क्लाईन एंड एसोसीएटस (मुंबई हाई) द्वारा ओएनजीसी ऑफशोर फाइव फील्ड पीयर रिट्यू	2019	अंतर्राष्ट्रीय
17	गैफने,क्लाईन एंड एसोसीएटस (हीरा) द्वारा ओएनजीसी ऑफशोर फाइव फील्ड पीयर रिव्यू	2019	अंतर्राष्ट्रीय
18	बीसेप फ्रेनलैब (नीलम) द्वारा ओएनजीसी ऑफशोर फाइव फील्ड पीयर रिव्यू	2019	अंतर्राष्ट्रीय

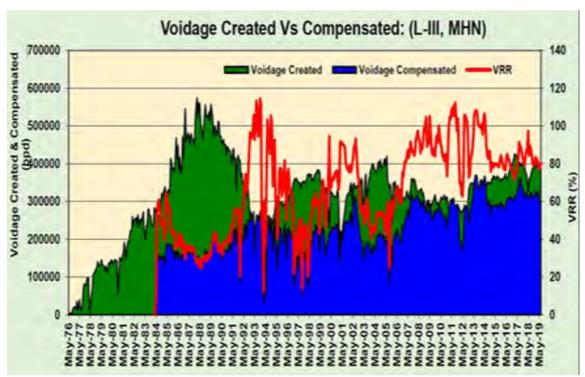
अनुलग्नक-॥ (जैसा कि पैरा 3.3 में संदर्भित है)

	मुंबई हाई, नीलम और हीरा क्षेत्रों में योजना बनाम वास्तविक जल इंजेक्शन									
वर्ष		मुंब	ई हाई साउथ	г			Į.	वुंबई हाई नॉ श	ৰ্	
	पुनर्विकास	वॉटर	वास्तविक	वास्तविक	निर्माण	पुनर्विकास	वॉटर	वास्तविक	डब्ल्यू आई	डब्ल्यू आई
	योजना के	इंजेक्शन	ज ल	कमी डब्ल्यू	योजना	योजना के	इंजेक्शन	ज ल	में	- में
	अनुसार	बिल्ड-अप	इंजेक्शन-	आई-	(के संदर्भ	अनुसार	बिल्ड-अप	इंजेक्शन-	वास्तविक	कमी(के
	आवश्यकता-	योजना-	बीडब्ल्यूपी	पुनर्विकास	में) डब्ल्यू	आवश्यकता	योजना-	बीडब्ल्यूपी	कमी	संदर्भ में)
	बीडब्ल्यूपीडी	बीडब्ल्यूपी	डी	योजना (के	आई- में	-	बीडब्ल्यूपी	डी	पुनर्विकास	निर्माण
		डी		संदर्भ में)	कमी	बीडब्ल्यूपी	डी		योजना(के	योजना
				(प्रतिशत)	(प्रतिशत)	डी			संदर्भ में)	(प्रतिशत)
									(प्रतिशत)	
2014-15	623728	604000	534689	14.28	11.48	489843	456900	394383	19.49	13.68
2015-16	782253	652300	582880	25.49	10.64	542895	427800	367240	32.36	14.16
2016-17	786461	621900	613800	21.95	1.30	562031	375700	376700	32.98	-0.27
2017-18	784145	622300	519200	33.79	16.57	559416	382360	403000	27.96	-5.40
2018-19	793774	577300	470402	40.44	18.10	548022	407300	389755	29.31	4.89
			औसत	27.19	11.62				28.42	5.41
			हीरा					नीलम		
तर्ष	पुनर्विकास	वॉटर	हीरा वास्तविक	वास्तविक	निर्माण	पुनर्विकास	वॉटर	नीलम वास्तविक	",	
वर्ष	पुनर्विकास योजना के	वॉटर इंजेक्शन	वास्तविक जल	कमी	योजना	पुनर्विकास योजना के	इंजेक्शन	वास्तविक जल	में	आई - में
वर्ष	_	इंजेक्शन बिल्ड-अप	वास्तविक जल इंजेक्शन-	कमी डब्ल्यू	योजना (के संदर्भ	योजना के अनुसार	इंजेक्शन बिल्ड-अप	वास्तविक जल इंजेक्शन-	में वास्तविक	आई - में कमी (के
वर्ष	योजना के अनुसार आवश्यकता-	इंजेक्शन बिल्ड-अप योजना-	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीः	कमी डब्ल्यू डी आई-	योजना (के संदर्भ में) डब्ल्यू	योजना के अनुसार आवश्यकता-	इंजेक्शन बिल्ड-अप योजना-	वास्तविक जल	में वास्तविक ो कमी	आई - में कमी (के संदर्भ में)
वर्ष	योजना के अनुसार	इंजेक्शन बिल्ड-अप	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीः	कमी डब्ल्यू डी आई- पुनर्विकास	योजना (के संदर्भ में) डब्ल्यू आई- में	योजना के अनुसार	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपी	वास्तविक जल इंजेक्शन-	में वास्तविक ो कमी पुनर्विकास	आई - में कमी (के संदर्भ में) निर्माण
वर्ष	योजना के अनुसार आवश्यकता-	इंजेक्शन बिल्ड-अप योजना-	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीः	कमी डब्ल्यू डी आई- पुनर्विकास योजना (के	योजना (के संदर्भ में) डब्ल्यू आई- में कमी	योजना के अनुसार आवश्यकता-	इंजेक्शन बिल्ड-अप योजना-	वास्तविक जल इंजेक्शन-	में वास्तविक हो कमी पुनर्विकास योजना(के	आई - में कमी (के संदर्भ में) निर्माण योजना
वर्ष	योजना के अनुसार आवश्यकता-	इंजेक्शन बिल्ड-अप योजना-	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीः	कमी डब्ल्यू डी आई- पुनर्विकास योजना (के संदर्भ में)	योजना (के संदर्भ में) डब्ल्यू आई- में	योजना के अनुसार आवश्यकता-	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपी	वास्तविक जल इंजेक्शन-	में वास्तविक कमी पुनर्विकास योजना(के संदर्भ में)	आई - में कमी (के संदर्भ में) निर्माण
	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपीडी	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीः	कमी डब्ल्यू डी आई- पुनर्विकास योजना (के संदर्भ में) (<i>प्रतिशत</i>)	योजना (के संदर्भ में) डब्ल्यू आई- में कमी (<i>प्रतिशत</i>)	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपी डी	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीई	में वास्तविक कमी पुनर्विकास योजना(के संदर्भ में) (<i>प्रतिशत</i>)	आई - में कमी (के संदर्भ में) निर्माण योजना (प्रतिशत)
2014-15	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपीडी 128550	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीः	कमी डब्ल्यू डी आई- पुनर्विकास योजना (के संदर्भ में) (<i>प्रतिशत</i>) 7 40.79	योजना (के संदर्भ में) डब्ल्यू आई- में कमी (<i>प्रतिशत</i>)	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपी डी	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीई 58319	में वास्तविक कमी पुनर्विकास योजना(के संदर्भ में) (प्रतिशत)	आई - में कमी (के संदर्भ में) निर्माण योजना (प्रतिशत)
2014-15 2015-16	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी 202099 205459	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपीडी 128550 89542	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीः 11966	कमी डब्ल्यू आई- पुनर्विकास योजना (के संदर्भ में) (<i>प्रतिशत</i>) 7 40.79	योजना (के संदर्भ में) डब्ल्यू आई- में कमी (<i>प्रतिशत</i>)	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी 98225 74625	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपी डी 61811 62508	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीई 58319	में वास्तविक कमी पुनर्विकास योजना(के संदर्भ में) (प्रतिशत) 40.63	आई - में कमी (के संदर्भ में) निर्माण योजना (प्रतिशत) 5.65 6.75
2014-15 2015-16 2016-17	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी 202099 205459 209234	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपीडी 128550 89542 142292	वास्तविक जल इंजेक्शन- बीडब्ल्यूपी: 11966 8665 108872	कमी डब्ल्यू औई- पुनर्विकास योजना (के संदर्भ में) (<i>प्रतिशत</i>) 7 40.79 7 57.82 2 47.97	योजना (के संदर्भ में) डब्ल्यू आई- में कमी (प्रतिशत) 6.91 3.22 23.49	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी 98225 74625 88130	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपी डी 61811 62508 96963	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीई 58319 58288 65344	में वास्तविक कमी पुनर्विकास योजना(के संदर्भ में) (प्रतिशत) 0 40.63 3 21.89	आई - में कमी (के संदर्भ में) निर्माण योजना (<i>प्रतिशत</i>) 5.65 6.75 32.61
2014-15 2015-16 2016-17 2017-18	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी 202099 205459 209234 174848	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपीडी 128550 89542 142292 165500	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीः 11966 8665 108872	कमी डब्ल्यू आई- पुनर्विकास योजना (के संदर्भ में) (<i>प्रतिशत</i>) 7 40.79 7 57.82 2 47.97 6 30.30	योजना (के संदर्भ में) डब्ल्यू आई- में कमी (प्रतिशत) 6.91 3.22 23.49 26.36	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी 98225 74625 88130 120813	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपी डी 61811 62508 96963 79800	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीई 58319 58288 65344 63439	में वास्तविक कमी पुनर्विकास योजना(के संदर्भ में) (प्रतिशत) 0 40.63 8 21.89 1 25.85 0 47.49	आई - में कमी (के संदर्भ में) निर्माण योजना (प्रतिशत) 5.65 6.75 32.61 20.50
2014-15 2015-16 2016-17	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी 202099 205459 209234	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपीडी 128550 89542 142292	वास्तविक जल इंजेक्शन- बीडब्ल्यूपी: 11966 8665 108872 121876	कमी डब्ल्यू ओई- पुनर्विकास योजना (के संदर्भ में) (<i>प्रतिशत</i>) 7 40.79 7 57.82 2 47.97 6 30.30 2 37.38	योजना (के संदर्भ में) डब्ल्यू आई- में कमी (प्रतिशत) 6.91 3.22 23.49	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी 98225 74625 88130	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपी डी 61811 62508 96963	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीई 58319 58288 65344	में वास्तविक कमी पुनर्विकास योजना(के संदर्भ में) (प्रतिशत) 0 40.63 8 21.89 1 25.85 0 47.49	आई - में कमी (के संदर्भ में) निर्माण योजना (<i>प्रतिशत</i>) 5.65 6.75 32.61
2014-15 2015-16 2016-17 2017-18 2018-19	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी 202099 205459 209234 174848	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपीडी 128550 89542 142292 165500 172125	वास्तविक जल इंजेक्शन- बीडब्ल्यूपी: 11966: 8665: 10887: 121876 11546:	कमी डब्ल्यू ओई- पुनर्विकास योजना (के संदर्भ में) (<i>प्रतिशत</i>) 7 40.79 7 57.82 2 47.97 6 30.30 2 37.38	योजना (के संदर्भ में) डब्ल्यू आई- में कमी (प्रतिशत) 6.91 3.22 23.49 26.36	योजना के अनुसार आवश्यकता- बीडब्ल्यूपीडी 98225 74625 88130 120813	इंजेक्शन बिल्ड-अप योजना- बीडब्ल्यूपी डी 61811 62508 96963 79800	वास्तविक जल इंजेक्शन- बीडब्ल्यूपीई 58319 58288 65344 63439	में वास्तविक कमी पुनर्विकास योजना(के संदर्भ में) (प्रतिशत) 0 40.63 8 21.89 4 25.85 0 47.49	आई - में कमी (के संदर्भ में) निर्माण योजना (प्रतिशत) 5.65 6.75 32.61 20.50

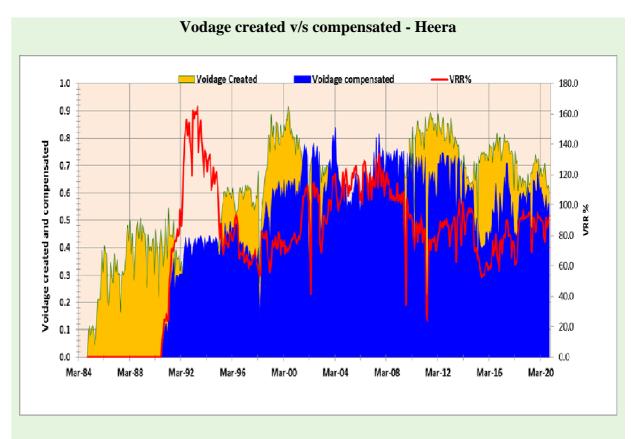
अनुलग्नक-III

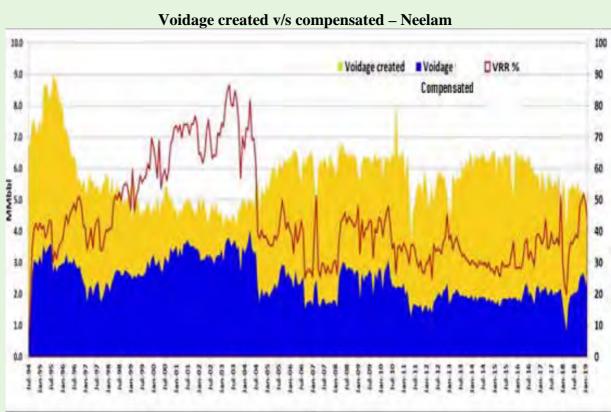

(जैसा कि पैरा 3.4 में संदर्भित है) योजना बनाम वार्षिक योजना आदानों का निष्पादन

		2014-1	15					
क्र.	विवरण	य	ोजनाबद्ध		7	ग्रस्तविक		कमी
सं		एमए	एमए	एम	एमए	एमए	एमए	एमएच
		चएन	चएस	एच	चएन	चएस	च	
1	नया जल इंजेक्टर ड्रिलिंग स्ट्रिंग्स	2	0	2	0	0	0	2
2	वर्कओवर जॉब्स (डबलयु ओ जे <i>)/</i> साइड	14	5	19	4	3	7	12
	ट्रैक (एसटी) मौजूदा वॉटर इंजेक्टर							
	स्ट्रिंग्स में							
3	रिग मुक्त जल इंजेक्टर रूपांतरण	6	7	13	5	6	11	2
	स्ट्रिंग्स							
4	वॉटर इंजेक्शन स्ट्रिंग्स का पुनःनिर्माण	7	33	40	5	28	33	7
5	स्टिमुलेशन स्ट्रिंग	10	24	34	9	11	20	14
		2015-1	6					
क्र.	विवरण		योजनाबद्ध			ास्तविक		कमी
सं.		एमए	एमए	एम	एमए	एमए	एम	एमएच
		चएन	चएस	एच	चएन	चएस	एच	
1	नया जल इंजेक्टर ड्रिलिंग स्ट्रिंग्स	2	0	2	0	0	0	2
2	बिना रिग के जल इंजेक्टर रूपांतरण स्ट्रिंग्स	3	3	6	0	0	0	6
3	चोक आकार वृद्धि स्ट्रिंग्स	1	0	1	1	0	1	0
4	डबलयु ओ जे.⁄एसटी मौजूदा जल इंजेक्टरों में	30	30	60	7	8	15	45
5	अतिरिक्त इंजेक्शन के लिए एमआईपी	1	3	4	0	2	2	2
6	वॉटर इंजेक्शन स्ट्रिंग्स का पुनःनिर्माण	9	0	9	3	1	4	5
7	स्टिमुलेशन	16	34	50	12	23	35	15
8	पीएफए प्रतिस्थापन के लिए स्ट्रिंग्स	0	9	9	0	4	4	5
		2016-1	17					
क्र.	विवरण	य	ोजनाबद्ध		a	ास्तविक		कमी
सं.		एमए	एमए	एम	एमए	एमए	एम	एमएच
		चएन	चएस	एच	चएन	चएस	एच	
1	नया जल इंजेक्टर ड्रिलिंग स्ट्रिंग्स	2	0	2	0	0	0	2
2	रिग मुक्त जल इंजेक्टर रूपांतरण स्ट्रिंग्स	0	2	2	0	0	0	2
3	वर्कओवर साइड ट्रॅक के बाद डब्ल्यू आई में रुपांतरण	2	0	2	0	0	0	2


4	मौजूदा जल इंजेक्टरों में डबलयु ओ जे/एसटी	3	6	9	2	1	3	6
5	चोक आकार वृद्धि	3	0	3	2	0	2	1
6	वॉटर इंजेक्शन का पुनःनिर्माण	11	8	19	10	8	18	1
7	स्टिमुलेशन	9	28	37	6	10	16	21
		2017-1	8					
क्र. सं.	विवरण	य	ोजनाबद्ध	•	ą	ास्तविक		कमी
		एमए	एमए	एम	एमए	एमए	एम	एमएच
		चएन	चएस	एच	चएन	चएस	एच	
1	नया जल इंजेक्टर ड्रिलिंग	2	0	2	3	0	3	-1
2	बिना रिग के जल इंजेक्टर रूपांतरण स्ट्रिंग्स	8	4	12	5	0	5	7
3	वर्क ओवर/साइड ट्रैक के बाद डब्ल्यू आई रूपांतरण	7	4	11	1	0	1	10
4	मौजूदा जल इंजेक्टरों में डबलयु ओ जे/एसटी	9	11	20	3	7	10	10
5	प्रोफ़ाइल संशोधन कार्य	3	0	3	0	0	0	3
6	वॉटर इंजेक्शन स्ट्रिंग्स का पुनःनिर्माण	2	7	9	2	7	9	0
7	स्टिमुलेशन	18	18	36	5	23	28	8
		2018-1	9					
क्र. सं.	विवरण	य	ोजनाबद्ध		ą	ास्तविक		कमी
		एमए	एमए	एम	एमए	एमए	एम	एमएच
		चएन	चएस	एच	चएन	चएस	एच	
1	नया जल इंजेक्टर ड्रिलिंग	3	0	3	1	0	1	2
2	बिना रिग के जल इंजेक्टर रूपांतरण	4	5	9	3	5	8	1
3	वर्क ओवर/साइड ट्रैक के बाद डब्ल्यू आई रूपांतरण	6	6	12	0	1	1	11
4	मौजूदा जल इंजेक्टरों में डबलयु ओ जे/एसटी	6	5	11	1	2	3	8
5	प्रोफ़ाइल संशोधन कार्य	4	0	4	2	0	2	2
6	वॉटर इंजेक्शन का पुनःनिर्माण	9	17	26	10	38	48	-22
	न - मुंबई हाई नॉर्थ, एमएचएस - मुंबई	<u> </u>			عـ عـ			

अनुलग्नक-IV (जैसा कि पैरा 3.6 में संदर्भित है)


मुंबई हाई साउथ



मुंबई हाई नॉर्थ

वीआरआर- शून्यता प्रतिस्थापन अनुपात

वी आरआर- शून्यता प्रतिस्थापन अन्पात

अनुलग्नक-V (जैसा कि पैरा 4.2 में संदर्भित है)

प्रमुख वॉटर इंजेक्शन उपकरण

प्लेटफॉर्म	प्रमुख स्थापित उपकरण	स्थापित मात्रा	स्टैंडबाई फिलॉसोफी
मुंबई साउथ			
वॉटर इंजेक्शन साउथ	समुद्री जल लिफ्ट पंप	3	2R +1SB
(डब्ल्यू आई एस <i>)</i>	बूस्टर पंप	3	2R+1SB
	मुख्य इंजेक्शन पंप	5	4R+1SB
	फाइन फ़िल्टर	12	10R+1SB+1BW
	डीओ टावर	2	2R
	वैक्यूम पंप	4	2R+2SB
	क्लोरिनेटर	2	1R+1SB
इन्फिल कॉम्प्लेक्स वाटर इंजेक्शन	समुद्री जल लिफ्ट पंप	3	2R+1SB
(आईसीडब्ल्यू)	बूस्टर पंप	3	2R+1SB
	मुख्य इंजेक्शन पंप	5	4R+1SB
	फाइन फ़िल्टर	6	4R+1SB+1BW
	डीओ टावर	2	2R
	वैक्यूम पंप	4	2R+2SB
	क्लोरिनेटर	2	1R+1SB
साउथ हाई वॉटर	समुद्री जल लिफ्ट पंप	3	2R+1SB
इंजेक्शन (एसएचडब्ल्यू)	बूस्टर पंप	3	2R+1SB
	मुख्य इंजेक्शन पंप	5	4R+1SB
	फाइन फ़िल्टर	7	6R+1SB
	डीओ टावर	2	2R
	वैक्यूम पंप	4	2R+2SB
	क्लोरिनेटर	2	1R+1SB
मुंबई हाई नोर्थ			
मुंबई नॉर्थ वॉटर	समुद्री जल लिफ्ट पंप	3	2R+1SB
इंजेक्शन (एमएन	ब्स्टर पंप	3	2R+1SB
डबलयु)	मुख्य इंजेक्शन पंप	5	4R+1SB
	फाइन फ़िल्टर	5	4R+1SB
	डीओ टावर	2	1R+1SB
	वैक्यूम पंप	4	2R+2SB
	क्लोरिनेटर	2	1R+1SB
वॉटर इंजेक्शन उत्तर	समुद्री जल लिफ्ट पंप	3	2R+1SB
(डब्ल्यू आई एन)	ब्स्टर पंप	3	2R+1SB
	मुख्य इंजेक्शन पंप	5	4R+1SB

2021 की प्रतिवेदन संख्या 19

प्लेटफॉर्म	प्रमुख स्थापित उपकरण	स्थापित मात्रा	स्टैंडबाई फिलॉसोफी
	फाइन फ़िल्टर	8	6R+1SB+1BW
	डीओ टावर	2	2R
हीरा			
हीरा वाटर इंजेक्टर	समुद्री जल लिफ्ट पंप	3	2R+1SB
	बूस्टर पंप	3	2R+1SB
	मुख्य इंजेक्शन पंप	5	3R+2SB
	फाइन फ़िल्टर	6	4R+2SB
	डीओ टावर	1	1R+0SB
	वैक्यूम पंप	2	1R+1SB
	क्लोरिनेटर	1	1R+0SB
नीलम			
नीलम वाटर इंजेक्शन	समुद्री जल लिफ्ट पंप	3	2R+1SB
(एन एल डब्ल्यू)	बूस्टर पंप	3	2R+1SB
	मुख्य इंजेक्शन पंप	4	2R+2SB
	फाइन फ़िल्टर	6	4R+2SB
	डीओ टावर	2	1R+1SB
	वैक्यूम पंप	4	2R+2SB
	क्लोरिनेटर	1	1R+0SB
नोट: आर-रनिंग, एस बी-	स्टैंडबाय, बी डब्ल्यू-बैकवॉश		

अनुलग्नक-VI

(जैसा कि पैरा 4.4 में संदर्भित है) वॉटर इंजेक्शन उपकरण की प्रतिस्थापन अविध

उपकरण	प्रतिस्थापन जीवन (जो भी पहले हो)
मुख्य इंजेक्शन पंप	20 वर्ष एवं 1,50,000 घंटे
समुद्री जल लिफ्ट पंप	15 वर्ष एवं 1,10,000 घंटे
ब्स्टर पंप	लेखापरीक्षा को प्रस्तुत नहीं किया गया
क्लोरिनेटर	15 वर्ष
डोसिंग पंप	10 वर्ष
अन्य छोटे पंप	10 वर्ष
एल टी मोटर्स (<25 के डब्ल्यू)	10 वर्ष
एल टी मोटर्स (>25 के डब्ल्यू <i>)</i>	15 वर्ष
वैक्यूम पंप-डीओ टावर	स्थिति आधारित**
वैक्यूम पंप मोटर-डीओ टावर	स्थिति आधारित**
फाइन फ़िल्टर/कॉर्स फ़िल्टर	स्थिति आधारित**

^{**} यह उपकरण नीति के विशिष्ट प्रावधानों में नहीं आते हैं और इसलिए, विशिष्ट स्थिति/प्रदर्शन/मरम्मत अर्थशास्त्र के आधार पर इसके प्रतिस्थापन का निर्णय लिया जाता है।

अनुलग्नक-VII

(जैसा कि पैरा 4.5 में संदर्भित है) जल के इंजेक्शन की सिस्टम उपलब्धता

इन्फिल कॉम	-प्लेक्स वॉटर इंजेक्शन	प्लेटफॉर्म						
वर्ष	एस डब्ल्यू एल पी	बी पी	एम आई पी	वी	डीओ	फाइन	कॉर्स	क्लोरिनेटर
				पी	टावर	फ़िल्टर	फ़िल्टर	
2014-15	100	99.1	94	100	77.6	88.5	0	22.54
2015-16	100	99.9	72.3	100	84.3	91.0	0	47.77
2016-17	98.8	100	82.2	98.1	99.4	94.2	0	46.02
2017-18	100	100	97.9	100	97	98.0	0	0
2018-19	100	100	100	98.7	98.5	99.5	0	0
मुंबई नॉर्थ व	गॅटर इंजेक्शन प्लेटफा	र्म						
वर्ष	एस डब्ल्यू एल पी	बी पी	एम आई पी	वी	डीओ	फाइन	कॉर्स	क्लोरिनेटर
				पी	टावर	फ़िल्टर	फ़िल्टर	
2014-15	100	100	100	100	100	100	0	100
2015-16	100	100	100	100	100	100	0	100
2016-17	100	100	100	100	100	100	0	100
2017-18	100	100	100	100	100	100	0	100
2018-19	99.8	100	100	100	100	100	0	100
साउथ उच्च	वॉटर इंजेक्शन प्लेटप	गर्म						
वर्ष	एस डब्ल्यू एल पी	बी पी	एम आई पी	वी	डीओ	फाइन	कॉर्स	क्लोरिनेटर
वर्ष	एस डब्ल्यू एल पी	बी पी	एम आई पी	वी पी	डीओ टावर	फाइन फ़िल्टर	कॉर्स फ़िल्टर	क्लोरिनेटर
वर्ष 2014-15	एस डब्ल्यू एल पी 100	बी पी 98.9	एम आई पी 98					क्लोरिनेटर 0
	·		·	पी	टावर	फ़िल्टर	फ़िल्टर	
2014-15	100	98.9	98	पी 99.1	टावर 100	फ़िल्टर 100	फ़िल्टर 0	0
2014-15 2015-16	100	98.9 100	98	पी 99.1 83.7	टावर 100 100	फ़िल्टर 100 100	<u>फ़िल्टर</u> 0	0
2014-15 2015-16 2016-17	100 99.8 99.5	98.9 100 98.7	98 99.9 99.6	पी 99.1 83.7 98.8	100 100 100	फ़िल्टर 100 100 100	फ़िल्टर 0 0	0 0 0
2014-15 2015-16 2016-17 2017-18 2018-19	100 99.8 99.5 98.9	98.9 100 98.7 97.4	98 99.9 99.6 97.4	पी 99.1 83.7 98.8 74.2	100 100 100 100	100 100 100 100	り の の の の の の の の の の の の の の の の の の の	0 0 0 0
2014-15 2015-16 2016-17 2017-18 2018-19	100 99.8 99.5 98.9 87.3	98.9 100 98.7 97.4	98 99.9 99.6 97.4	पी 99.1 83.7 98.8 74.2	100 100 100 100	100 100 100 100	り の の の の の の の の の の の の の の の の の の の	0 0 0 0
2014-15 2015-16 2016-17 2017-18 2018-19 वॉटर इंजेक्श	100 99.8 99.5 98.9 87.3	98.9 100 98.7 97.4 92.9	98 99.9 99.6 97.4 85.5	भी 99.1 83.7 98.8 74.2 75.9	100 100 100 100 100	100 100 100 100 93.5	り の の の の の の の の の の の の の の の の の の の	0 0 0 0
2014-15 2015-16 2016-17 2017-18 2018-19 वॉटर इंजेक्श	100 99.8 99.5 98.9 87.3	98.9 100 98.7 97.4 92.9	98 99.9 99.6 97.4 85.5	भी 99.1 83.7 98.8 74.2 75.9	こでは 100 100 100 100 100 100 計計	फ़िल्टर 100 100 100 100 93.5	फ़िल्टर 0 0 0 0 0	0 0 0 0
2014-15 2015-16 2016-17 2017-18 2018-19 वॉटर इंजेक्श वर्ष	100 99.8 99.5 98.9 87.3 IF FIE CHIP	98.9 100 98.7 97.4 92.9	98 99.9 99.6 97.4 85.5	पी 99.1 83.7 98.8 74.2 75.9	CIQT 100 100 100 100 SI3I CIQT C	फ़िल्टर 100 100 100 93.5 फाइन फ़िल्टर	फ़िल्टर 0 0 0 0 0 कॉर्स फ़िल्टर	0 0 0 0 0
2014-15 2015-16 2016-17 2017-18 2018-19 वॉटर इंजेक्श वर्ष	100 99.8 99.5 98.9 87.3 व नॉर्थ प्लेटफार्म एस डब्ल्यू एल पी	98.9 100 98.7 97.4 92.9 बी पी	98 99.9 99.6 97.4 85.5 एम आई पी	पी 99.1 83.7 98.8 74.2 75.9 वी पी	CIQT 100 100 100 100 SI 31 CIQT 100 1	फ़िल्टर 100 100 100 93.5 फाइन फ़िल्टर 100	फ़िल्टर 0 0 0 0 0 कॉर्स फ़िल्टर	0 0 0 0 0 • क्लोरिनेटर
2014-15 2015-16 2016-17 2017-18 2018-19 वॉटर इंजेक्श वर्ष 2014-15 2015-16	100 99.8 99.5 98.9 87.3 व नॉर्थ प्लेटफार्म एस डब्ल्यू एल पी 100 100	98.9 100 98.7 97.4 92.9 बी पी 100	98 99.9 99.6 97.4 85.5 एम आई पी 100	भी 99.1 83.7 98.8 74.2 75.9 बी भी 100	टावर 100 100 100 100 100 डीओ टावर 100	फ़िल्टर 100 100 100 93.5 फाइन फ़िल्टर 100	फ़िल्टर 0 0 0 0 0 कॉर्स फ़िल्टर 0	0 0 0 0 0 क्लोरिनेटर 100 99.58
2014-15 2015-16 2016-17 2017-18 2018-19 वॉटर इंजेक्श वर्ष 2014-15 2015-16 2016-17	100 99.8 99.5 98.9 87.3 F FIE CRITE TO THE TO THE TO THE TO	98.9 100 98.7 97.4 92.9 बी पी 100 100	98 99.9 99.6 97.4 85.5 एम आई पी 100 100	पी 99.1 83.7 98.8 74.2 75.9 वी पी 100 100	टावर 100 100 100 100 100 डोओ टावर 100 100	फ़िल्टर 100 100 100 93.5 फाइन फ़िल्टर 100 100	いっぱ いっ	0 0 0 0 0 0 क्लोरिनेटर 100 99.58

2021 की प्रतिवेदन संख्या 19

वर्ष	एस डब्ल्यू एल पी	बी पी	एम आई पी	वी	डीओ	फाइन	कॉर्स	क्लोरिनेटर
				पी	टावर	फ़िल्टर	फ़िल्टर	
2014-15	100	98.7	99.5	48.8	100	63.1	0	0
2015-16	100	99.8	99.9	14.3	100	58.2	0	0
2016-17	100	91.0	99.1	65.2	99.6	58.2	0	0
2017-18	100	85.0	100.0	66.1	99.9	62.4	0	0
2018-19	100	49.3	100.0	50.0	69.7	64.9	0	0
वॉटर इंजेक्श	ान हीरा प्लेटफार्म							
वर्ष	एस डब्ल्यू एल पी	बी पी	एम आई पी	वी	डीओ	फाइन	कॉर्स	क्लोरिनेटर
				पी	टावर	फ़िल्टर	फ़िल्टर	
2014-15	100	100	100	100	99.8	100	0	0
2015-16	100	100	100	100	99.8	100	0	0
2016-17	100	100	100	100	99.7	100	0	0
2017-18	100	100	100	100	99.5	100	0	0
2018-19	100	100	100	100	99.6	100	16	0
नीलम वॉटर	इंजेक्शन प्लेटफार्म							
वर्ष	एस डब्ल्यू एल पी	बी पी	एम आई पी	वी	डीओ	फाइन	कॉर्स	क्लोरिनेटर
				पी	टावर	फ़िल्टर	फ़िल्टर	
2014-15	99.40	100.00	99.00	99	100	100	0	0
2015-16	99.89	100.00	99.46	99	100	100	0	0
2016-17	100.00	100.00	100.00	99	100	100	0	0
2017-18	99.30	100.00	86.68	99	100	100	0	0
2018-19	99.60	100.00	93.76	99	100	100	0	0
				<u>.</u>	c _ c	- 4 - 0	•	4

स्रोतः उपकरण उपलब्धता और सिस्टम उपलब्धता के संबंध में मुंबई हाई और नीलम हीरा की प्रबंधन प्रतिक्रिया।

एस डब्ल्यू एल पी - सी वाटर लिफ्ट पंप, बी पी - ब्रूस्टर पंप, एम आई पी - मुख्य इंजेक्शन पंप, वी पी -वैक्यूम पंप,डीओ टॉवर - डी-ऑक्सीजनेशन टॉवर

अनुलग्नक-VIII

(जैसा कि पैरा 4.6 में संदर्भित है)

मरम्मत के दौरान मासिक रिपोर्ट में कार्यकारी समय/प्रेषण डेटा के उदाहरण

महीना/वर्ष	कार्यकारी समय	स्टैंडबाय घंटे	रखरखाव / डाउनटाइम घंटे	उपलब्धता (<i>प्रतिशत</i>)	मरम्मत पर मुख्य इंजेक्शन पंप (एमआईपी) 6680 -
मई 2014	24	0	720	3.2	अप्रैल 2014 से
जुलाई 2014	24	0	720	3.2	मार्च 2018
अगस्त	24	0	720	3.2	
2014					

कार्यकारी समय (घंटा) (एमआईपी) शून्य दिखाया गया लेकिन जल प्रेषण की सूचना दी

महीना/ वर्ष	मुख्य इंजेक्शन पंप (एमआईपी <i>)</i>	कार्यकारी समय	स्टैंडबाय घंटे	रखरखाव / डाउनटाइम घंटे	(प्रतिशत)	मासिक रिपोर्ट में रिपोर्ट किया गया एमआईपी प्रेषण डेटा
अक्टूबर	एमआईपी 1	0	742	2	99.7	295732
2015	एमआईपी 2	0	742	2	99.7	
	एमआईपी 3	0	0	744	0.00	
	एमआईपी 4	0	0	744	0.00	

बूस्टर पंप (टैग संख्या 6620) - कार्यकारी समय रखरखाव / डाउनटाइम घंटे के समान दर्शाया गया है

महीना/वर्ष	कार्यकारी	स्टैंडबाय घंटे	रखरखाव /	उपलब्धता (<i>प्रतिशत</i>)
	समय		डाउनटाइम घंटे	
दिसंबर 2016	666	78	666	10.5
जनवरी 2017	711	33	711	4.4
फरवरी 2017	558	114	558	17.0
मार्च 2017	537	205	539	27.6
अप्रैल 2017	655	63	657	8.8
मई 2017	663	79	665	10.6
जून 2017	675	43	677	6.0
जुलाई 2017	219	523	221	70.3
अगस्त 2017	219	523	221	70.3

अनुलग्नक-IX (जैसा कि पैरा 5.3 में संदर्भित है) इंजेक्शन जल की औसत गुणवत्ता

			मुंबई उच्च संप	त्ति		
			डब्ल्यूटीएस प्लेट	फार्म		
पैरामीटर	सीमा	2014-15	2015-16	2016-17	2017-18	2018-19
टी एस एस	<0.2	0.212	0.242	0.2632	0.27	0.287
<i>(</i> मि.ग्रा∕ली. <i>)</i>						
मिलीपोर (ली./30)	>6	10.159	9.133	कण विश्लेषक (पीए)	7.5	7.8
मिनट				काम नहीं कर रहा		
टर्बिडिटी (एन टी यु)	<0.2	0.213	0.176	टर्बिडिटी मीटर काम	0.25	0.231
			-	नहीं कर रहा		
कण गणना स0/मि.ली	<2000		पीए काम नहीं		845	1104
विघटित ऑक्सीजन <i>(</i> पीपीबी <i>)</i>	<20	491.65	2251.083	2059.8	3565	2858
अवशिष्ट सल्फाइट	>1.0	0.981	0.767	0.542	0.21	Nil
<i>(</i> मि.ग्रा∕ली. <i>)</i>						
आयरन	<0.05	0.092	0.060	0.07275	0.080	0.089
काउंट(स0/मि.ली)						
सल्फाइड (मि.ग्रा/ली.)	शून्य	शून्य	शून्य	शून्य	श्र्न्य	शून्य
			आईसीडब्ल्यू प्लेट			
पैरामीटर	सीमा	2014-15	2015-16	2016-17	2017-18	2018-19
टी एस एस	<0.2	0.180	0.166	0.177	0.211	0.17
<i>(</i> मि.ग्रा∕ली. <i>)</i>	•	0.400	10.00	0.55	7.0	- 4
मिलीपोर <i>(</i> ली./30) मिनट	>6	9.183	10.80	9.55	7.3	7.1
टर्बिडिटी (एन टी यु)	<0.2	0.183	0.157	0.1825	0.21	0.177
कण गणना <i>(</i> स0 <i>/</i> मि.ली <i>)</i>	<2000			पीए काम नहीं कर रहा		
विघटित ऑक्सीजन (पी पी बी)	<20	93.96	206.33	497	415	Nil
अवशिष्ट सल्फाइट (मि.ग्रा/ली.)	>1.0	0.474	0.660	0.60	0.51	0.44
आयरन काउंट <i>(</i> स0/मि.ली <i>)</i>	<0.05	0.048	0.052	0.049	0.062	0.053
सल्फाइड (मि.ग्रा/ली.)	Nil	Nil	Nil	Nil	Nil	Nil
			एसएचडब्ल्यू प्लेट	फार्म		
पैरामीटर	सीमा	2014-15	2015-16	2016-17	2017-18	2018-19
टी एस एस	<0.2	0.165	0.175	0.22	नम्ना बिंद्	उपलब्ध नहीं है
<i>(</i> मि.ग्रा∕ली. <i>)</i>						
मिलीपोर <i>(</i> ली./30)	>6	11.11	9.244	7.78	नम्ना बिंदु	उपलब्ध नहीं है
मिनट						

- किस्स्ति का किस्सि	<0.2	0.205	0.217	0.225	0.31	0.33
टर्बिडिटी (एन टी यु)				0.235		
कण गणना	<2000	771.85	1444.583	2200	3246	3875
<i>(</i> स0/मि.ली <i>)</i>						
विघटित ऑक्सीजन	<20	1253.43	1367.583 2029.8		2050	1237
<i>(</i> पीपीबी <i>)</i>						
अवशिष्ट सल्फाइट	>1.0	0.752	0.531	0.70	0.80	0.29
<i>(</i> मि.ग्रा∕ली. <i>)</i>			2			
आयरन	<0.05	0.081	0.113	0.212	0.235	0.22
काउंट(स0/मि.ली)						
सल्फाइड (मि.ग्रा/ली.)	Nil	Nil	Nil	Nil	Nil	Nil
			एमएनडब्ल्यू प्लेट			
पैरामीटर	सीमा	2014-15	2015-16	2016-17	2017-18	2018-19
टीएसएस (मि.ग्रा/ली.)	<0.2	0.194	0.201	0.19	0.188	0.190
मिलीपोर <i>(</i> ली./30)	>6	8.909	8.641	9.52	8.3	8.2
मिनट						
टर्बिडिटी (एनटीयु)	<0.2	0.223	0.197	0.19	0.19	0.18
कण गणना	<2000	1310.49	पीए का	म नहीं कर रहा	774	1234
<i>(</i> स0/मि.ली <i>)</i>						
विघटित ऑक्सीजन	<20	62.31	75.167	45.33	52	Nil
<i>(</i> पीपीबी <i>)</i>						
अवशिष्ट सल्फाइट	>1.0	0.886	1.057	0.75	0.57	0.69
<i>(</i> मि.ग्रा ∕ली. <i>)</i>						
आयरन	<0.05	0.059	0.048	0.050	0.061	0.057
काउंट <i>(</i> स0/मि.ली <i>)</i>						
सल्फाइड <i>(</i> मि.ग्रा/ली. <i>)</i>	Nil	Nil	Nil	Nil	Nil	Nil
			डब्ल्यू आई एन प्ले	टिफार्म		
पैरामीटर	सीमा	2014-15	2015-16	2016-17	2017-18	2018-19
टीएसएस <i>(</i> मि.ग्रा/ली.)	<0.2	0.87	0.415	0.33	0.32	0.244
मिलीपोर (ली./30)	>6	8.26	8.058	7.34	8	8.2
मिनट						
टर्बिडिटी (एनटीयु)	<0.2	0.38	0.32	0.31	0.3	0.24
कण गणना	<2000	2132	पीए काम नहीं	2313	2213	पीए काम नहीं
<i>(</i> स./मि.ली <i>)</i>			कर रहा			कर रहा
विघटित ऑक्सीजन	<20	244	104	85	165	Nil
<i>(</i> पीपीबी <i>)</i>						
अवशिष्ट सल्फाइट	>1.0	1.04	1.063	1.05	1.05	0.717
<i>(</i> मि.ग्रा <i>/</i> ली. <i>)</i>						
आयरन	<0.05	0.04	0.047	0.048	0.045	0.049
काउंट <i>(</i> स./मि.ली)						
सल्फाइड (मि.ग्रा/ली.)	Nil	Nil	Nil	Nil	Nil	Nil
,						

नीलम क्षेत्र

पैरामीटर	सीमा	2014-15	2015-16	2016-17	2017-18	2018-19
टीएसएस (मि.ग्रा/ली.)	<0.20	0.36	0.26	0.29	0.26	0.27
मिलीपोर (ली./30) मिनट	5-7 MIN	4.70	6.55	6.08	5.85	5.42
टर्बिडिटी (एनटीयु)	<0.20	0.35	0.23	0.26	0.25	0.29
कण गणना (स0/मि.ली)	<2000	2545.83	1084.58	1285.92	2344.00	1266.01
विघटित ऑक्सीजन (पीपीबी)	<20	16.92	20.87	10.27	65.74	37.75
अवशिष्ट सल्फाइट <i>(</i> मि.ग्रा/ली. <i>)</i>	1.0 MIN	1.00	0.87	1.00	1.02	0.81
आयरन काउंट(स0/मि.ली)	<0.05	0.31	0.20	0.15	0.04	0.25
सल्फाइड (मि.ग्रा/ली.)	NIL	Nil	Nil	Nil	Nil	Nil

हीरा क्षेत्र

पैरामीटर	सीमा	2014-15	2015-16	2016-17	2017-18	2018-19
टीएसएस (मि.ग्रा/ली.)	<0.20	0.18	0.19	0.20	0.32	0.78
मिलीपोर (ली./30) मिनट	5-7 MIN	7.82	7.79	7.29	5.49	3.82
टर्बिडिटी (एनटीयु)	<0.20	0.12	0.13	0.19	0.30	0.31
कण गणना <i>(</i> स0/मि.ली)	<2000	991.00	1144.92	1859.17	1391.17	2499.84
विघटित ऑक्सीजन (पीपीबी)	<20	38.47	55.39	23.28	52.01	202.23
अवशिष्ट सल्फाइट (मि.ग्रा/ली.)	1.0 MIN	1.17	1.15	1.26	0.81	0.92
आयरन काउंट(स0/मि.ली)	<0.05	0.04	0.04	0.04	0.17	0.07
सल्फाइड <i>(</i> मि.ग्रा/ली. <i>)</i>	NIL	Nil	Nil	Nil	Nil	Nil

स्रोत: मुंबई हाई, नीलम हीरा केमिस्ट्री मासिक रिपोर्ट

अनुलग्नक-X (जैसा कि पैरा 5.5 में संदर्भित है) अनुशंसित मानदंडों के विरुद्ध वॉटर इंजेक्शन रसायनों की कम मात्रा

			कौयगुलांट				
वर्ष	डोजिंग नॉर्म -	डब्ल्यू.आई.	वाई.आई.	आईसी	एसएच	एमएनड	औसत
41	पीपीएम	एन.	एस	डब्ल्यू	डब्ल्यू	ब्ल्यू	31141(1
2014-15		0.19	0	0	0.2	0.2	0.12
2015-16	0.4 से 0.8	0.43	0	0.26	0	0.37	0.21
2016-17	0.4 H 0.8	0.15	0	0.01	0	0.18	0.07
2017-18		0.18	0	0.41	0	0.29	0.18
2018-19		0.26	0	0.37	0	0.44	0.21

	पॉली एल्युमिनियम क्लोराइड (पीएसी)							
वर्ष	डोजिंग नॉर्म -	डब्ल्यू.आई.	वाई.आई.	आईसी	एसएच	एमएनड	औसत	
94	पीपीएम	एन <i>.</i>	एस	डब्ल्यू	डब्ल्यू	ब्ल्यू	जासत	
2014-15		0.4	0.64	0.41	0.21	0.42	0.42	
2015-16	0.4 से 0.8	0.62	0.53	0.35	0.23	0.47	0.44	
2016-17		0.88	0.82	0.45	0.13	0.44	0.55	
2017-18		0.55	1.59	0.14	0	0.21	0.50	
2018-19		0.73	1.12	0.7	0	0.22	0.55	

	ऑक्सीजन स्कैवंजर							
वर्ष	डोजिंग नॉर्म -	डब्ल्यू.आई.	वाई.आई.	आईसी	एसएच	एमएनड	औसत	
44	पीपीएम	एन.	एस	डब्ल्यू	डब्ल्यू	ब्ल्यू	जारात	
2014-15		5.25	6.94	7.35	5.6	8.41	6.71	
2015-16		7.07	8.7	6.75	5.83	8.58	7.39	
2016-17	10	8.12	7.46	7.96	5.17	5.32	6.81	
2017-18		7.14	5.2	7.92	4.93	5.95	6.23	
2018-19		7.61	11.15	10.13	8.87	7.46	9.04	

	जल संक्षारण अवरोधक							
वर्ष	डोजिंग नॉर्म -	डब्ल्यू.आई.	वाई.आई.	आईसी	एसएच	एमएनड	औसत	
94	पीपीएम	एन <i>.</i>	एस	डब्ल्यू	डब्ल्यू	ब्ल्यू	जासत	
2014-15		5.81	7.33	8.67	4.83	7.59	6.85	
2015-16		7.27	8.31	8.81	5.56	8.63	7.72	
2016-17	20	8.75	6.65	11.03	3.58	5.56	7.11	
2017-18		2.78	5.33	6.08	2.12	2.79	3.82	
2018-19		8.02	10.75	9.82	6.24	9.99	8.96	

अनुलग्नक-XI (जैसा कि पैरा 5.6 में संदर्भित है) वेलहेड पर जल की गुणवत्ता के माप पर सिफारिशें

		2	2-2%
क्रम. सं.	संस्थान अध्ययन रिपोर्ट	टिप्पणियाँ	सिफारिशें
1.	अपतटीय इंजेक्शन जल गुणवत्ता पर आईआरएस मैनुअल - मार्च 1994	निगरानी के लिए प्रक्रिया प्लेटफार्म के बजाय वेल हेड्स पर जोर देने की जरूरत है। लेकिन, दुर्भाग्य से, मुंबई हाई में मामला उल्टा है, जहां प्रक्रिया प्लेटफार्मों पर ऊर्जा के साथ-साथ जनशक्ति का उपयोग किया जाता है और वेलहेड्स पर निगरानी की उपेक्षा की जा रही है। इस प्रक्रिया में, नियोजित तरीके से वेलहेड्स की नियमित रूप से निगरानी नहीं की जा रही है, और इस प्रकार ऑपरेशनल इंजीनियर जलाशय के अंदर डाले गए जल की गुणवत्ता से अनजान हैं। कुओं पर की गई अनियमित निगरानी से संकेत मिलता है कि इंजेक्शन के जल की गुणवत्ता खराब है और विनिर्देशों के अनुसार नहीं है। लेकिन, ऐसा लगता है कि, इस तथ्य को गंभीरता से नहीं लिया गया है और इंजेक्शन जल की गुणवत्ता में सुधार के लिए कोई उपचारात्मक उपाय नहीं किया गया है ताकि इसे परिचालन सीमाओं के भीतर वापस लाया जा सके।	सभी वेलहेड्स पर सभी जल गुणवत्ता मानकों की साप्ताहिक निगरानी।
2.	मुंबई हाई - मार्च 2011 में इंजेक्शन जल की गुणवत्ता और इंजेक्टरों के इंजेक्शन मूल्यांकन पर आईआरएस अध्ययन रिपोर्ट	पाइन फिल्टर से वेलहेड तक परिवहन के दौरान इंजेक्शन लाइनों में जल की गुणवत्ता के मानकों में गिरावट। बैक वॉश के अधिकांश नमूनों में टोटल सस्पेंडेड सॉलिड्स (टीएसएस) और मैलापन काफी अधिक था और फ़िल्टर करने की क्षमता वांछित मान से काफी कम थी। सल्फेट आयरन में कमी और आयरन की मात्रा में वृद्धि सल्फेट को कम करने वाले बैक्टीरिया (एसआरबी) गतिविधि को इंगित करती है। कैल्शियम, मैग्नीशियम, बाइकार्बोनेट में कमी स्केलिंग की प्रवृत्ति का संकेत देती है।	हेडर और वेलहेड के बाद जल की गुणवत्ता की
3.	मुंबई हाई में सुविधा लागत अनुकूलन और वॉटर इंजेक्शन सुधार पर इन-हाउस समिति की रिपोर्ट - जुलाई 2012	पिगिंग फ्लिशिंग वाटर और बैकफ्लो वाटर विश्लेषण के विश्लेषण से पता चला कि फाइन फिल्टर से वेल हेड तक परिवहन के दौरान इंजेक्शन लाइनों में जल की गुणवत्ता के मानकों में गिरावट आई है। अधिकांश बैक वॉश नमूनों में, उच्च कुल निलंबित ठोस और मैलापन और कम फ़िल्टर क्षमता देखी गई। सल्फेट आयरन में कमी और आयरन तत्वों में वृद्धि, कैल्शियम, मैग्नीशियम, बाइकार्बोनेट में कमी के कारण एसआरबी और स्केलिंग गतिविधि।	फाइन फिल्टर, इंजेक्शन हैंडर और वेलहेंड के बाद जल की गुणवत्ता की नियमित निगरानी।
4.	वॉटर इंजेक्शन लाइनों की समयपूर्व	मुंबई हाई नॉर्थ में, ट्यूबिंग लीकेज के कारण इंजेक्शन में कमी/ मुख्य रूप से जंग के कारण आवरण क्षति जो	

विफलता	पर
आईओजीपीटी	रिपोर्ट
- अगस्त 201	4

कि खराब इंजेक्शन जल की गुणवत्ता के कारण वर्षों से मिलिपोर टेस्ट, अवशिष्ट हुई है और मुंबई हाई साउथ के कुओं में खराब अंत:क्षेपण जो कि गठन के बंद होने की वजह से है और जो इंजेक्शन जल के साथ गठन में पहुंचने वाली विदेशी सामग्री के कारण हैं। वांछित रसायन की अनुपलब्धता जल की गुणवत्ता को बनाए रखने को प्रभावित करती है।

सल्फाइट, जंग दर और एसआरबी काउंट सहित मानव रहित प्लेटफार्मी पर जल के इंजेक्शन की गुणवत्ता की मासिक आधार पर नियमित निगरानी।

अनुलग्नक-XII (जैसा कि पैरा 5.6 में संदर्भित है) वेलहेड के रास्ते में जल की गुणवत्ता में गिरावट

क्रमांक सं.	प्रक्रिया परिसर व				मानवरहित प्लेट	डब्ल्आई प्लेटफॉर्म से वेलहेड तक जल की गुणवत्ता में गिरावट (प्रतिसंख्या में)				
	प्रक्रिया प्लेट फॉर्म	नम्ना लेने की तिथि	आइरनसा मग्री (मि.ग्रा./ लीटर)	मैलापन <i>(</i> एनटीयु <i>)</i>	वेल हेड	नमूना लेने की तिथि	आयरन सामग्री (मि.ग्रा/ ली.)	मैलापन <i>(</i> एनटीयु <i>)</i>	आयरन सामग्री (मि.ग्रा/ ली.)	मैलापन (एनटीयु)
1	बीएचएस	10.11.18	0.088	*	एसबी-1	10.11.18	2.8	*	31.8	*
2	बीएचएस	10.11.18	0.088	*	एसबी <i>-2</i>	10.11.18	1.6	*	18.2	*
3	एमएचएन	04.06.16	0.04	0.19	एन 11	04.06.16	2.1	1.76	52.5	9.26
4	एमएचएन	09.07.16	0.059	0.19	एन 11	09.07.16	0.9	2.4	15.3	12.63
5	एमएचएन	02.05.16	0.04	0.17	एन <i>15</i>	02.05.16	1	1.2	25.0	7.06
6	एमएचएन	29.05.16	0.04	0.18	एन <i>15</i>	29.05.16	3	1.06	75.0	5.89
7	एमएचएन	14.06.16	0.04	0.21	एन <i>15</i>	14.06.16	1.5	1.08	37.5	5.14
8	एमएचएन	05.07.16	0.054	0.19	एन <i>16</i>	05.07.16	1.2	0.63	22.2	3.32
9	एमएचएन	21.05.16	0.04	0.17	एनबी	21.05.16	0.6	1.1	15.0	6.47
10	एमएचएन	10.06.16	0.04	0.19	एनबी	10.06.16	1.2	0.6	30.0	3.16
11	एमएचएन	11.07.16	0.058	0.2	एनबी	11.07.16	1.2	0.94	20.7	4.70
12	एमएचएन	05.05.16	0.04	0.17	एनएस	05.05.16	0.9	1.3	22.5	7.65
13	एमएचएन	09.07.16	0.059	0.19	एनएस	09.07.16	0.6	1.22	10.2	6.42
14	एमएचएन	19.05.16	0.04	0.16	एनडब्ल्यू	19.05.16	0.9	3.87	22.5	24.19
15	एमएचएन	10.09.18	0.069	0.19	एनएस	10.09.18	>1.0	8.3	*	43.68
16	एमएचएन	10.09.18	0.069	0.19	डब्ल्यूए	10.09.18	>1.0	13	*	68.42
17	एमएचएन	25.11.18	0.047	0.2	एन <i>5</i>	25.11.18	<1.0	4.7	*	23.50
18	एमएचएन	05.05.16	0.04	0.17	डब्ल्यूए	05.05.16	2.4	4.1	60.0	24.12
19	एमएचएन	10.09.18	0.069	0.19	डब्ल्यूए	10.09.18	>1.0	13	*	68.42
20	एमएचएन	05.05.16	0.04	0.17	डब्ल्यूए	05.05.16	2.4	4.1	60.0	24.12
21	एमएचएन	20.05.16	0.04	0.18	डब्ल्यू <i> 4</i>	20.05.16	0.3	0.14	7.5	0.78
22	एमएचएन	11.07.16	0.058	0.2	डब्ल्यू <i> 4</i>	11.07.16	0.6	0.99	10.03	4.95
23	एमएचएन	01.06.16	0.04	0.16	डब्ल्यू/6	01.06.16	0.6	2.55	15.0	15.94
24	एमएचएन	09.09.18	0.069	0.19	एन <i>11</i>	09.09.18	>1.0	2.83	*	14.89
25	एमएचएन	29.05.16	0.04	0.18	एन <i>15</i>	29.05.16	3	1.06	75.0	5.89
26	एमएचएन	01.08.16	0.06	0.23	एन <i>15</i>	01.08.16	1.2	1.1	20.0	4.78
27	एमएचएन	21.08.16	0.047	0.18	एन <i>15</i>	21.08.16	0.9	0.94	19.1	5.22
28	एमएचएन	07.09.18	0.07	0.18	एन <i>15</i>	07.09.18	>1.0	11.7	*	65.00
29	एमएचएन	10.09.18	0.069	0.19	एन <i>19</i>	10.09.18	>1.0	2.4	*	12.63
30	एमएचएन	29.11.18	0.46	0.18	एन <i>19</i>	29.11.18	<1.0	7.44	*	41.33
31	एमएचएन	28.11.18	0.047	0.19	आरएस <i>5</i>	28.11.18	<1.0	5.45	*	28.68

2021 की प्रतिवेदन संख्या 19

32	एमएचएन	28.11.18	0.047	0.19	आरएस <i>5</i>	28.11.18	<1.0	5.45	*	28.68
33	एमएचएन	28.11.18	0.047	0.19	एनवी	28.11.18	<1.0	2.87	*	15.11
34	एमएचएन	04.12.18	0.048	0.18	एनवी	04.12.18	<1.0	2.87	*	15.94
35	एमएचएन	22.01.19	0.047	0.18	जैड सी	22.01.19	<1.0	28	*	155.56
36	एमएचएन	22.02.19	0.049	0.18	जैड सी	22.02.19	<1.0	28	*	155.56
37	डब्ल्य <u>ू</u> आईएन	13.12.17	0.048	0.37	डब्ल्यू 13-3	13.12.17	1.8	2.88	37.5	7.78
38	डब्ल्य <u>ू</u> आईएन	13.12.17	0.048	0.37	डब्ल्यू <i>13-3</i>	13.12.17	1.7	2.75	35.4	7.43
39	डब्ल्य <u>ू</u> आईएन	13.12.17	0.048	0.37	डब्ल्यू <i>13-3</i>	13.12.17	1.7	2.29	35.4	6.19
40	डब्ल्य <u>ू</u> आईएन	28.03.18	0.043	0.22	डब्ल्यू <i>12</i>	28.03.18	1.4	*	32.6	*
								औसत	30.24	25.42

स्रोतः रसायन विज्ञान अनुभाग की मासिक प्रदर्शन रिपोर्ट * डेटा उपलब्ध नहीं

अनुलग्नक-XIII

(जैसा कि पैरा 7.1 में संदर्भित है)

जलाशय स्वास्थ्य पर कंपनी के सलाहकारों/आंतरिक समितियों की टिप्पणियों और सिफारिशों का सार

- (i) श्री ए.बी. दास गुप्ता को पेट्रोलियम और प्राकृतिक गैस मंत्रालय द्वारा दबाव रखरखाव सुविधाओं सिहत विभिन्न मुद्दों से संबंधित उत्तर खोजने के लिए नियुक्त किया गया था (अप्रैल 1990)। रिपोर्ट में कहा गया (नवंबर 1990) कि उच्च गैस तेल अनुपात वाले कुओं से अतिरिक्त गैस उत्पादन और जल के इंजेक्शन के कार्यान्वयन में देरी के कारण अधिक खालीपन हुआ। यदि गैस एला॥ जलाशय (प्रमुख उत्पादक जलाशय) से आ रही थी, तो यह जीओआर के अधिक कड़े नियंत्रण के माध्यम से संभव होने की तुलना में कम वसूली के साथ समाप्त हो सकती है। जब तक जीओआर को कट-ऑफ पॉइंट के भीतर नहीं रखा गया था, तब तक जलाशय से अनुमानित अंतिम वसूली की उम्मीद नहीं की जा सकती थी।
- (ii) मैसर्स गणेश ठाकुर, एक अंतरराष्ट्रीय सलाहकार कंपनी द्वारा कम दबाव वाले क्षेत्रों को संबोधित करने और शून्यता क्षितिपूर्ति/जलाशय स्वास्थ्य और स्वीप दक्षता में सुधार करने के लिए नियुक्त किया गया था (2007)। परियोजना रिपोर्ट में त्वरित जल इंजेक्शन, 100 प्रतिशत शून्यता प्रतिस्थापन प्राप्त करने के लिए इंजेक्शन बिल्ड अप और मुंबई उच्च क्षेत्र में कम इंजेक्शन वाले कुओं की उत्तेजना के लिए सिफारिश की गई है। हीरा में, यह देखा गया कि जल के इंजेक्शन में वृद्धि के साथ, एक बार जब दबाव 1200 पीएसआई के तत्कालीन स्तर से लगभग 1500 पीएसआई तक बढ़ जाता है, तो तेल की दर में वृद्धि का अनुमान लगाया गया था।
- (iii) वॉटर इंजेक्शन पर एक कार्यशाला आयोजित करने के लिए कंपनी द्वारा नियुक्त (अगस्त 2009) एक अंतरराष्ट्रीय सलाहकार मेसर्स विलियम कॉब्स एंड एसोसिएट्स ने कहा कि संचयी शून्यता प्रतिस्थापन अनुपात, इंजेक्शन की शुरुआत के बाद से एक से कम था और इसके परिणामस्वरूप, क्षेत्र में जलाशय के दबाव में गिरावट जारी रही जिसके परिणामस्वरूप कुओं की उत्पादकता में गिरावट आई। प्रभावी शून्यता प्रतिस्थापन के लिए, सलाहकार ने वीआरआर मूल्यों को 100 प्रतिशत (आमतौर पर 110 से 130 प्रतिशत) से अधिक रखने का सुझाव दिया।
- (iv) मुंबई हाई फील्ड में वॉटर इंजेक्शन के विस्तार और पुनर्वितरण के लिए मुंबई हाई द्वारा गठित इन-हाउस टास्क फोर्स ने कहा (अक्टूबर 2018) कि जल के इंजेक्शन के असमान वितरण के कारण जलाशय में पार्श्व और परतों के भीतर अंतर कम हो गया है, जिसके परिणामस्वरूप स्थानीयकृत जलाशय के विभिन्न भागों में दबाव सिंक और/या उच्च जल उत्पादन हुआ। टास्कफोर्स ने दबाव रखरखाव के लिए जल के इंजेक्शन की प्रभावशीलता और 100 से 120 प्रतिशत की वृद्धिशील शून्यता मुआवजे के स्तर को लिक्षित करके और इंजेक्शन जल को फिर से वितरित करके स्वीप में सुधार पर जोर दिया।
- (v) मैसर्स गैफने क्लाईन एंड एसोसीएट्स (जीसीए) को कंपनी ने मुंबई हाई फील्ड के लिए ओएनजीसी प्रोडक्शन प्रोफाइल की स्वतंत्र समीक्षा करने के लिए नियुक्त किया था। अपनी रिपोर्ट (दिसंबर 2019) में, जीसीए ने निष्कर्ष निकाला कि जल के इंजेक्शन में व्यवधान और/या देरी ने कुंऐ की कम उत्पादकता और जलाशय के दबाव में गिरावट के माध्यम से उत्पादन में उच्च गिरावट में योगदान दिया। इसने स्वीप दक्षता में सुधार और जलाशय ऊर्जा को बहाल करने, इंजेक्शन योजना पर ध्यान केंद्रित करने और शून्यता प्रतिस्थापन अन्पात को बढ़ाने और 100 प्रतिशत से अधिक शून्यता प्रतिस्थापन को बनाए रखने की

सिफारिश की। जीसीए ने कहा कि प्रबंधन उत्पादन प्रोफ़ाइल तभी हासिल की जा सकती है जब जल के इंजेक्शन को उच्च स्तर की दक्षता पर बनाए रखा जाए और इंजेक्शन नेटवर्क की अखंडता को बनाए रखने की सिफारिश की जाए।

(vi) हीरा फील्ड के प्रोडक्शन प्रोफाइल की स्वतंत्र समीक्षा करने के लिए मैसर्स जीसीए को भी नियुक्त किया गया था। अपनी रिपोर्ट में, मेसर्स जीसीए ने कहा (दिसंबर 2019) कि प्रोफाइल तभी मान्य है जब एचआरपी III पुनर्विकास योजना के अनुसार जल के इंजेक्शन को बनाए रखा जाए। ऐतिहासिक रूप से, इंजेक्शन बंद होने सिहत कई कारणों से जल का इंजेक्शन स्थिर नहीं था और हीरा के कुछ हिस्सों में दबाव सिंक विकसित हो गए थे। 2012-19 के दौरान जल के इंजेक्शन में 21 प्रतिशत की कमी के परिणामस्वरूप तरल दरों में 21 प्रतिशत की गिरावट आई थी। जीसीए ने ओएनजीसी को एक व्यापक दबाव निगरानी कार्यक्रम आयोजित करने की सिफारिश की क्योंकि उपलब्ध दबाव डेटा विरल और असंगत था।

अनुलग्नक-XIV ए (जैसा कि पैरा 7.3 में संदर्भित है)

मुंबई हाई फील्ड में अपर्याप्त जल के इंजेक्शन के कारण घाटे के मूल्य को दर्शाने वाला विवरण

	ओएन	ाजीसी वर्किंग	शीट				эй	डिट वर्कि	ग शीट			
मुंबई हाई फील्ड वर्ष	एफ आर ने 6 प्रतिशत नुकसान (एमएम टी.) के साथ	6 प्रतिशत हानि (एमएमटी) के साथ वास्तविक डब्ल्यू आई- सिमुलेशन मॉडल के साथ FR की सिफारिश की	तेल शॉर्ट- गिरावट (एमएम टी)	6 प्रतिशत हानि के बिना तेल की कमी (एमएमटी)	वास्तविक नुकसान (प्रतिशत)	तेल शॉर्ट- गिरावट (एमएमटी)	पीपीएसीक च्चे तेल की दर प्रति बीबी/ (अमेरिन डॉलर/	विनिमय	तेल घाटे का मूल्य (? करोड़ में)	ओएनजीसी प्राप्त प्रति बैरल कच्चे तेल की दर शुद्ध सब्सिडी और लेवी	वैधानिक	सरकार को राजस्व का नुकसान (₹ करोड़ में)
	की <i>)</i>	गई**										
	(a)	(b)	(c)=	(d)=	(e)	(f)=(d)-	(g)	(h)	(i)=(f)*	(j)	(k)	(I)=(i)-(k)
			(a)-(b)	(C)*		(d*e/			(g)*(h)*			
				100/94		100)			7.6*10 ⁶ /			
2014-15	9.018	8.873	0.145	0.154	0.64	0.153	84.156	61.15	599.44	36.35	258.92	340.52
2015-16	8.995	8.625	0.371	0.395	0.64	0.392	46.166	65.46	900.71	32.71	636.42	264.29
2016-17	8.84	8.323	0.517	0.550	1.55	0.541	47.558	67.09	1,312.98	35.88	990.69	322.29
2017-18	8.567	7.971	0.596	0.634	2.35	0.619	56.427	64.18	1,704.10	40.44	1226.44	477.66
2018-19	8.056	7.39	0.666	0.709	1.96	0.695	69.880	69.90	2,578.78	50.77	1873.35	705.43
कुल	43.476	41.182	2.295	2.441		2.401			7,096.01		4985.82	2110.19

^{**} वास्तविक के अनुसार केवल वॉटर इंजेक्शन मात्रा को बदलने के बाद प्रबंधन द्वारा सिमुलेशन मॉडल के अनुसार उत्पादन को फिर से तैयार किया गया है।

अनुलग्नक -XIV बी
(जैसा कि पैरा 7.3 में संदर्भित है)
नीलम और हीरा के खेतों में अपर्याप्त जल के इंजेक्शन के कारण घाटे के मूल्य को दर्शाने वाला विवरण

	ओएनर्ज	ोसी वर्किंग	शीट					ऑडिट वर्विं	ज्य शीट			
हीरा फील्ड वर्ष	एफ आर ने 6 प्रतिशत नुकसान (एमएमटी <i>)</i> के साथ सिमुलेशन मॉडल की सिफारिश की <i>)</i>	डब्ल्यू आई- सिमुलेशन मॉडल के साथ एफआर	तेल शॉर्ट- गिरावट (एमएम टी <i>)</i>	6प्रतिशत हानि के बिना तेल की कमी (एमएमटी)	वास्तविक नुकसान (प्रतिशत)	तेल शॉर्ट- गिरावट (एमएमटी <i>)</i>	पीपीएसी कच्चे तेल की दर प्रति बीबी/ (अमेरिकी डॉलर)	विनिमय दर यूएस <i>\$=</i> ₹	तेल घाटे का मूल्य (₹ करोड़ में <i>)</i>		ओएनजीसी की वसूली मूल्य सब्सिडी और वैधानिक लेवी से घटाकर (ह करोड़ में)	सरकार को राजस्व का नुकसान (₹करोड़ में)
	(a)	(b)	(c)=	(d)=	(e)	(f) =	(g)	(h)	(i)=(f)*	(j)	(k)	(I)= (i)-(k)
			(a)-(b)	(c)* 100/94		(d) - (d*e/			(g)*(h)* 7.6*10 ⁶ /			
				100/94		100)			10 ⁷			
2014-15	2.174	1.979	0.195	0.207	6.44	0.194	84.156	61.1471	759.05	36.35	327.88	431.17
2015-16	2.223	1.982	0.241	0.256	0.00	0.256	46.166	65.4611	588.85	32.71	417.20	171.65
2016-17	2.199	1.949	0.25	0.266	3.55	0.257	47.558	67.0896	622.02	35.88	469.33	152.70
2017-18	2.117	1.844	0.273	0.290	10.16	0.261	56.427	64.1781	718.11	40.44	516.84	201.27
2018-19	1.979	1.638	0.341	0.363	11.22	0.322	69.88	69.901	1195.62	50.77	868.58	327.03
कुल	10.692	9.392	1.3	1.383		1.290			3883.66		2599.84	1283.82

2021 की प्रतिवेदन संख्या 19

	ओएन	जीसी वर्किंग	शीट					ऑडिट वर्किंग	शीट			
नीलम फील्ड वर्ष	एफआर ने 6 प्रतिशत नुकसान (एमएमटी) के साथ सिमुलेशन मॉडल की सिफारिश की)	6 प्रतिशत हानि (एमएमटी) के साथ वास्तविक डब्ल्यू आई- सिमुलेशन मॉडल के साथ FR की सिफारिश की गई**	तेल शॉर्ट- गिरावट (एमएमटी <i>)</i>	क्प्रतिशत हानि के बिना तेल की कमी (एमएमटी	वास्तविक नुकसान (प्रतिशत)	तेल शॉर्ट- गिरावट (एमएमटी)	PPAC कच्चे तेल की दर प्रति बीबी/ (अमेरिकी डॉलर\$)	विनिमय दर यूएस <i>\$=</i> ₹	तेल घाटे का मूल्य (₹ करोड़ में)		ओएनजीसी की वसूली मूल्य सब्सिडी और वैधानिक लेवी से घटाकर (₹ करोड़ में)	सरकार को राजस्व का नुकसान (₹करोड़ में)
	(a)	(b)	(c)=	(d)=	(e)	(f)= (d)-	(g)	(h)	(i)=(f)*	(j)	(k)	(l)= (i)-(k)
			(a)-(b)	(c)*		(d*e/			(g)*(h)*			
				100/94		100)			7.6*10 ⁶ /			
2015-16	0.763	0.755	0.008	0.009	3.06	0.008	46.166	65.4611	18.95	32.71	13.43	5.52
2016-17	0.701	0.675	0.026	0.028	3.52	0.027	47.558	67.0896	64.71	35.88	48.83	15.89
2017-18	0.639	0.61	0.029	0.031	16	0.026	56.427	64.1781	71.32	40.44	51.33	19.99
2018-19	0.710	0.674	0.036	0.038	0.03	0.038	69.88	69.901	142.13	50.77	103.26	38.88
कुल	2.813	2.714	0.099	0.105		0.099			297.12		216.84	80.28
एनएच कुल						1.389			4180.77		2816.68	1364.10

^{**} वास्तविक के अनुसार केवल वॉटर इंजेक्शन मात्रा को बदलने के बाद प्रबंधन द्वारा सिमुलेशन मॉडल के अनुसार उत्पादन को फिर से तैयार किया गया है।

	शब्दकोष
संपत्ति	यह एक ऐसी इकाई को संदर्भित करता है जो मौजूदा कुओं से तेल और प्राकृतिक गैस के उत्पादन और उपभोक्ता को प्रसंस्करण और आपूर्ति के लिए तेल और गैस के परिवहन में शामिल है।
बैकवाशिंग - फाईन फिल्टर	फाइन फिल्टर की बैकवाशिंग प्रवाह को उलटने की एक विधि है ताकि फिल्टर से अशुद्धियां दूर हो जाएं।
बैकवाशिंग - इंजेक्टर	बैकवाशिंग वॉटर इंजेक्टर निकटवर्ती वेलबोर क्षति को दूर करने और खोई हुई इंजेक्टिविटी की एक महत्वपूर्ण मात्रा को बहाल करने के लिए एक अतिरिक्त तरीका है।
जीवाणुनाशक	अमीन/एल्डिहाइड आधारित रसायन जो स्लग को वांछित दर और आवधिकता पर इंजेक्ट किया जाता है ताकि अमाइन/एल्डिहाइड के प्रति संवेदनशील सभी जीवाणुओं को नष्ट किया जा सके। गैर-अमाइन गैर-एल्डिहाइड (एन ए एन ए) आधारित रसायनों को भी सभी जीवाणुओं को मारने के लिए वांछित दर और आवधिकता पर स्लग इंजेक्ट किया जाता है। इन तीनों प्रकार के जीवाणुनाशकों को एक विशेष प्रकार के बायोसाइड के साथ रोगाणुओं द्वारा असंवेदनशीलता के विकास के जोखिम से बचने के लिए वैकल्पिक रूप से स्लग डोज़ किया जाता है।
निर्माण योजना	जल के इंजेक्शन के लिए एसेट द्वारा तैयार वार्षिक योजना।
कौगुलांट	बहुत छोटे निलंबित ठोस कणों को बड़े कणों में मिलाने में मदद करके फाइन फिल्टर की सहायता करने के लिए रसायन, जो जल से बाहर फ़िल्टर करना आसान होता है।
जंग अवरोधक	इस रसायन को अंदर की सतहों पर कोटिंग करके उपकरण और पाइपलाइनों के क्षरण को रोकने के लिए इंजेक्ट किया जाता है।
संचयी शून्यता मुआवजा	द्रव की निकासी के कारण उत्पन्न शून्यता का संचयी मुआवजा।
डिफॉमर	फ़िल्टर्ड समुद्री जल में डीऑक्सी वैक्यूम टावर्स में सतह के तनाव को कम करता है और इस तरह जल की झाग की प्रवृत्ति को कम करता है क्योंकि यह प्रवाह नियंत्रण वाल्व के दबाव से टॉवर में वैक्यूम तक जाता है।
विघटित ऑक्सीजन	इंजेक्शन के जल में घुले ऑक्सीजन के हिस्से।
डॉसिंग पंप	रासायनिक इंजेक्शन प्रणाली वॉटर इंजेक्शन प्रणाली के महत्वपूर्ण घटकों में से एक है। इंजेक्शन जल की वांछित गुणवत्ता बनाए रखने के लिए जल के इंजेक्शन ऑपरेशन के दौरान पूर्व-निर्धारित आवृत्ति पर वांछित खुराक पर विभिन्न वॉटर इंजेक्शन रसायनों को लगातार इंजेक्शन (खुराक) की आवश्यकता होती है।
बढ़ी हुई तेल वसूली (ईओआर)	ईओआर, जलाशय में सामान्य रूप से मौजूद न होने वाले सामग्री को इंजेक्शन द्वारा तेल की रिकवरी है।

2021 की प्रतिवेदन संख्या 19

उपकरण	परिचालन उद्देश्यों के लिए उस विशेष उपकरण की उपलब्धता।
उपलब्धता	The artist of th
कार्यकारी समिति	कार्यकारी समिति जिसमें अध्यक्ष और प्रबंध निदेशक एवं पूर्णकालिक निदेशक शामिल
(ईसी)	हैं और ओएनजीसी के काम के हित में बोर्ड स्तर से नीचे के अधिकारियों को उनमें
(5(11)	निहित शक्तियों को उप-प्रतिनिधि करने के लिए अधिकृत है।
जीएबी	सामान्य एरोबिक बैक्टीरिया।
जीओआर	गैस तेल अनुपात।
आईईओटी	इंजीनियरिंग और महासागर प्रौद्योगिकी संस्थान, ओएनजीसी (पनवेल, मुंबई में)।
इंजेक्टिविटी	जलाशय में इंजेक्शन की दर। इंजेक्शन के जल में ठोस, जैविक पदार्थ, जंग उत्पादों
	आदि की उपस्थिति से अच्छी तरह से इंजेक्शन क्षमता प्रभावित होती है
आईओजीपीटी	तेल और गैस उत्पादन प्रौद्योगिकी संस्थान, ओएनजीसी (पनवेल, मुंबई में)।
आईआरएस	जलाशय अध्ययन संस्थान, ओएनजीसी (अहमदाबाद में)।
मुख्य निष्पादन	केपीआई एक मात्रात्मक माप है जिसका उपयोग प्रदर्शन के उद्देश्यों को पूरा करने में
संकेतक	किसी संगठन, कर्मचारी आदि की सफलता का मूल्यांकन करने के लिए किया जाता
(केपीआई)	है।
एमआईसी	सूक्ष्म जीव प्रेरित जंग।
ओईएम	मूल उपकरण निर्माता।
ऑक्सीजन	गैर-ऑक्सीकरण रसायन बनाने के लिए इसके साथ प्रतिक्रिया करके डी-ऑक्सीजनेशन
स्कैवेंजर	टॉवर के तल में शेष भंग ऑक्सीजन को नष्ट कर देता है।
पीएम मॉडुल	एसएपी प्रणाली का संयंत्र रखरखाव (पीएम) मॉड्यूल।
पिग्गिंग	पिगिंग एक छोटा, गोलाकार या डिस्क उपकरण है जिसका उपयोग प्रवाह रेखा को साफ करने के लिए किया जाता है। पिगिंग के प्राथमिक कारण हो सकते हैं (i) लाइन की सफाई (कमीशनिंग, मलबे की सफाई), (ii) लाइन प्रबंधन (तरल हटाने, जंग अवरोधक फैलाव और मोम हटाने), और (iii) लाइन निरीक्षण (बुद्धिमान पिगिंग)। यह पाइपलाइनों की अखंडता सुनिश्चित करने के लिए भी किया जाता है। यह रोगाणुओं के नियंत्रण के लिए सबसे प्रभावी और किफायती तरीकों में से एक है।
पॉलीइलेक्ट्रोलाइट	कौयगुलांट के समान लेकिन एक अलग रासायनिक प्रतिक्रिया का उपयोग करता है जो छोटे-निलंबित ठोस कणों को आसान फ़िल्टरिंग के लिए बड़े कणों में क्लस्टर करने का कारण बनता है।
स्केल इन्हीबिटर	पाइपिंग और उपकरणों के अंदर कैल्शियम/स्ट्रोंटियम स्केल को बनने से रोकने के लिए इस रसायन को इंजेक्ट किया जाता है।
माध्यमिक वसूली	माध्यमिक पुनर्प्राप्ति में जलाशय पर फिर से दबाव डालने और तेल को विस्थापित करने के लिए जल का इंजेक्शन शामिल है। जल बाढ़ सबसे आम माध्यमिक विधि है।
एसआरबी	सल्फर कम करने वाले बैक्टीरिया।

2021 की प्रतिवेदन संख्या 19

प्रणाली की उपलब्धता	उत्पादन के निर्बाध प्रवाह के लिए उपकरणों (ऑपरेटिंग और स्टैंडबाय दोनों) की उपलब्धता।
शून्यता प्रतिस्थापन अनुपात (वीआरआर)	वीआरआर को उत्पादित तरल पदार्थ की मात्रा के लिए इंजेक्शन तरल पदार्थ की मात्रा के रूप में परिभाषित किया गया है।
इंजेक्शन कुआँ / स्ट्रिंग	इंजेक्शन कुआँ एक कुआँ है जिसके माध्यम से जलाशय के दबाव को बनाए रखने के लिए जलाशय में जल डाला जाता है। इंजेक्शन वेल में सिंगल स्ट्रिंग या ड्यूल स्ट्रिंग्स हो सकते हैं।
उत्पादन कुआँ /इंजेक्शन कुआँ	उत्पादन कुओं जो उत्पादन के किफायती स्तर का उत्पादन बंद कर देते हैं, नए कुओं की ड्रिलिंग पर अतिरिक्त खर्च को बचाने के लिए जल के इंजेक्शन कुओं में परिवर्तित कर दिए जाते हैं।
अपस्ट्रीम	अपस्ट्रीम' अन्वेषण और उत्पादन में शामिल तेल और गैस उद्योग में संचालन के चरणों के लिए एक शब्द है।

© भारत के नियंत्रक एवं महालेखापरीक्षक www.cag.gov.in